970 resultados para sampling methods
Resumo:
Identifying the geographic distribution of populations is a basic, yet crucial step in many fundamental and applied ecological projects, as it provides key information on which many subsequent analyses depend. However, this task is often costly and time consuming, especially where rare species are concerned and where most sampling designs generally prove inefficient. At the same time, rare species are those for which distribution data are most needed for their conservation to be effective. To enhance fieldwork sampling, model-based sampling (MBS) uses predictions from species distribution models: when looking for the species in areas of high habitat suitability, chances should be higher to find them. We thoroughly tested the efficiency of MBS by conducting an important survey in the Swiss Alps, assessing the detection rate of three rare and five common plant species. For each species, habitat suitability maps were produced following an ensemble modeling framework combining two spatial resolutions and two modeling techniques. We tested the efficiency of MBS and the accuracy of our models by sampling 240 sites in the field (30 sitesx8 species). Across all species, the MBS approach proved to be effective. In particular, the MBS design strictly led to the discovery of six sites of presence of one rare plant, increasing chances to find this species from 0 to 50%. For common species, MBS doubled the new population discovery rates as compared to random sampling. Habitat suitability maps coming from the combination of four individual modeling methods predicted well the species' distribution and more accurately than the individual models. As a conclusion, using MBS for fieldwork could efficiently help in increasing our knowledge of rare species distribution. More generally, we recommend using habitat suitability models to support conservation plans.
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
The objective of this work was to test methods for pre-harvest sprouting assessment in wheat cultivars. Fourteen wheat cultivars were grown in Londrina and Ponta Grossa municipalities, Paraná state, Brazil. They were sampled at 10 and 17 days after physiological maturity and evaluated using the methods of germination by rainfall simulation (in a greenhouse), in-ear grain sprouting, and grains removed from the ears. The in-ear grain sprouting method allowed the differentiation of cultivars, but showed different resistance levels from the available description of cultivars. The sprouting of grain removed from the ears did not allow a reliable distinction of data on germination in any harvest date or location. The method of rainfall simulation is the most suitable for the assessment of cultivars as to pre-harvest sprouting, regardless of the sampling date and evaluated location.
Resumo:
We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
Resumo:
Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.
Resumo:
The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 microL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 degrees C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques" (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL(-1) for fluoxetine and norfluoxetine and 20 to 500 ng mL(-1) for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL(-1) for all the analytes. The stability of DBS was also evaluated at -20 degrees C, 4 degrees C, 25 degrees C, and 40 degrees C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive-derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.
Resumo:
BACKGROUND & AIMS: Trace elements (TE) are involved in the immune and antioxidant defences which are of particular importance during critical illness. Determining plasma TE levels is costly. The present quality control study aimed at assessing the economic impact of a computer reminded blood sampling versus a risk guided on-demand monitoring of plasma concentrations of selenium, copper, and zinc. METHODS: Retrospective analysis of 2 cohorts of patients admitted during 6 months periods in 2006 and 2009 to the ICU of a University hospital. INCLUSION CRITERIA: to receive intravenous micronutrient supplements and/or to have a TE sampling during ICU stay. The TE samplings were triggered by computerized reminder in 2006 versus guided by nutritionists in 2009. RESULTS: During the 2 periods 636 patients met the inclusion criteria out of 2406 consecutive admissions, representing 29.7% and 24.9% respectively of the periods' admissions. The 2009 patients had higher SAPS2 scores (p = 0.02) and lower BMI compared to 2006 (p = 0.007). The number of laboratory determinations was drastically reduced in 2009, particularly during the first week, despite the higher severity of the cohort, resulting in à 55% cost reduction. CONCLUSIONS: The monitoring of TE concentrations guided by a nutritionist resulted in a reduction of the sampling frequency, and targeting on the sickest high risk patients, requiring a nutritional prescription adaptation. This control leads to cost reduction compared to an automated sampling prescription.
Resumo:
The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,
Resumo:
The penetration resistance (PR) is a soil attribute that allows identifies areas with restrictions due to compaction, which results in mechanical impedance for root growth and reduced crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was determined spatial distribution models of PR, and defined areas with mechanical impedance for roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths analyzed showed spatial dependence, with adjustments to exponential and spherical models. The cluster analysis that considered sampling points allowed establishing areas with compaction problem identified in the maps by kriging interpolation. The analysis with main components identified three soil layers, where the middle layer showed the highest values of PR.
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.
Resumo:
A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).
Resumo:
The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.
Resumo:
This work investigates mathematical details and computational aspects of Metropolis-Hastings reptation quantum Monte Carlo and its variants, in addition to the Bounce method and its variants. The issues that concern us include the sensitivity of these algorithms' target densities to the position of the trial electron density along the reptile, time-reversal symmetry of the propagators, and the length of the reptile. We calculate the ground-state energy and one-electron properties of LiH at its equilibrium geometry for all these algorithms. The importance sampling is performed with a single-determinant large Slater-type orbitals (STO) basis set. The computer codes were written to exploit the efficiencies engineered into modern, high-performance computing software. Using the Bounce method in the calculation of non-energy-related properties, those represented by operators that do not commute with the Hamiltonian, is a novel work. We found that the unmodified Bounce gives good ground state energy and very good one-electron properties. We attribute this to its favourable time-reversal symmetry in its target density's Green's functions. Breaking this symmetry gives poorer results. Use of a short reptile in the Bounce method does not alter the quality of the results. This suggests that in future applications one can use a shorter reptile to cut down the computational time dramatically.
Resumo:
We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).