943 resultados para residual stresses
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
Adhesive forces between two approaching asperities will deform the asperities, and under certain conditions this will result in a sudden runaway deformations leading to a jump-to-contact instability. We present finite element-based numerical studies on adhesion-induced deformation and instability in asperities. We consider the adhesive force acting on an asperity, when it is brought near a rigid half-space, due to van der Waals interaction between the asperity and the half-space. The adhesive force is considered to be distributed over the volume of the asperity (body force), thus resulting in more realistic simulations for the length scales considered. Iteration scheme based on a ``residual stress update'' algorithm is used to capture the effect of deformation on the adhesion force, and thereby the equilibrium configuration and the corresponding force. The numerical results are compared with the previous approximate analytical solutions for adhesion force, deformation of the asperity and adhesion-induced mechanical instability (jump-to-contact). It is observed that the instability can occur at separations much higher,and could possibly explain the higher value of instability separation observed in experiments. The stresses in asperities, particularly in case of small ones, are found to be high enough to cause yielding before jump -to-contact. The effect of roughness is considered by modeling a spherical protrusion on the hemispherical asperity.This small-scale roughness at the tip of the asperities is found to control the deformation behavior at small separations, and hence are important in determining the friction and wear due to the jump-to-contact instability.
Resumo:
Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.
Resumo:
A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A thermal stress problem of a spherical shell with a conical nozzle is solved using a continuum approach. The thermal loading consists of a steady temperature which is uniform on the inner and outer surfaces of the shell and the conical nozzle but may vary linearly across the thickness. The thermal stress problem is converted to an equivalent boundary value problem and boundary conditions are specified at the junction of the spherical shell and conical nozzle. The stresses are obtained for a uniform increase in temperature and for a linear variation of temperature across the thickness of the shell, and are presented in graphical form for ready use.
Resumo:
The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 degrees C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications. (c) 2010 Published by Elsevier Ltd.
Resumo:
In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Some errors have been observed in the analytical expression for the resistance to flow (lambda R), and in the computation of shear stress distribution (tau R) in the analysis of Prawal Sinha and Chandan Singh (1). These errors have been rectified in the present analysis. Also, better values have been suggested for the couple stress parameter alpha for getting better results for lambda R and tau R.
Resumo:
Low interlaminar strength and the consequent possibility of interlaminar failures in composite laminates demand an examination of interlaminar stresses and/or strains to ensure their satisfactory performance. As a first approximation, these stresses can be obtained from thickness-wise integration of ply equilibrium equations using in-plane stresses from the classical laminated plate theory. Implementation of this approach in the finite element form requires evaluation of third and fourth order derivatives of the displacement functions in an element. Hence, a high precision element developed by Jayachandrabose and Kirkhope (1985) is used here and the required derivatives are obtained in two ways. (i) from direct differentiation of element shape functions; and (ii) by adapting a finite difference technique applied to the nodal strains and curvatures obtained from the finite element analysis. Numerical results obtained for a three-layered symmetric and a two-layered asymmetric laminate show that the second scheme is quite effective compared to the first scheme particularly for the case of asymmetric laminates.
Resumo:
Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.
Resumo:
High?quality Ag?doped YBa2Cu3O7?? thin films have been grown by laser ablation on R?plane ?1102? sapphire without any buffer layer. Thin films have been found to be highly c?axis oriented with Tc=90 K, transition width ?T?1 K, and transport Jc=1.2×106 A?cm?2 at 77 K in self?field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 ?? at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in?plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance. © 1995 American Institute of Physics.