989 resultados para reduction chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gum arabic is widely used in the food industry as an additive, both as a thickener and an emulsifier. This study has compared the emulsification properties of two types of gums, KLTA (Acacia senegal) and GCA (Acacia seyal), both in their native/untreated forms and after exposure to high pressure (800 MPa). Further studies were undertaken to chemically modify the disulphide linkages present and to investigate the effects of their reduction on the diffusion of the carbohydrate materials. The emulsification properties of the gum samples were examined by determining the droplet size distribution in a ‘‘model’’ oil-in-water system. Results showed that high pressure treatment and chemical reduction of gums changed the emulsification properties of both gums. The high molecular weight component in arabinogalactanproteins (AGP/GP), and more ‘‘branched’’ carbohydrates present in gum arabic, may be responsible for the emulsification properties of GCA gum, indicating that the emulsification mechanisms for KLTA and GCA were different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein–tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LaFe(1-x)CO(x)O(3) perovskites were conventionally or nanocasting synthesized. The nanocasting involved the preparation of a micro-mesoporous carbon mould using a Silica Aerosil 200 and a carbon source. Then, perovskites were carbon cast at 800 degrees C. The solids were characterized by XRD, N(2) sorption, FTIR, TGA/DTG, SEM and TEM. N(2) sorption evidenced that the nanocast perovskites did not show significant intraparticle porosity in despite of their enhanced (30-50 m(2)/g) specific surface area (SSA). Nevertheless, TEM images, XRD and Rietveld refinement data showed that the solids are constituted at least by 97 wt% of perovskite phase and by agglomerates smaller than 100 nm constituted by crystallites of about 6 nm. TGA/DTG results demonstrated carbon oxidation during the perovskite formation, thus eliminating the template effect and facilitating the occurrence of sintering, which limited the SSA increase. The nanocast perovskites were more active in the reduction of NO than the uncast ones, behavior that was attributed to the increase in their SSA that allows the exposure of a higher number of accessible active sites. However, the perovskite composition and the presence of impurities can reduce the effect of the improvement of the textural properties. The nanocast perovskites also showed high thermal and catalytic stability, corroborating their potential as catalysts for the studied reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased (center dot)NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of (center dot)NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A porous nickel-8 mol% yttria stabilized zirconia (Ni-8YSZ) composite, used as anode for solid oxide fuel cell, was obtained by reduction of NiO-8YSZ cermet. The first goal was the evaluation of the temperature effect of powder processing by thermogravimetry. In addition, the influence of porosity in the reduction kinetic of the sample sintered at 1450 A degrees C was evaluated. The final porosity produced in NiO-8YSZ composite by pore former was 30.4 and 37.9 vol.%, respectively, for 10 and 15 mass% of corn starch. The sample with 15 mass% of corn starch promotes a reduction rate almost twice higher than sample with 10 mass% of corn starch. The porosity introduced by the reduction of NiO was 23 vol.%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of whole cells of micro-organisms to bring about the biotransformation of an organic compound offers a number of advantages, but problems caused by enzymatic Promiscuity may be encountered upon With Substrates hearing more than one functional group. A one-pot screening method, in which whole fungal cells were incubated with a Mixture of 4-rnethylcyclohexanone I and phenyl methyl Sulfide 2, has been employed to determine the chemoselectivity of various biocatalysts. The hyphomycetes, Aspergillus terreus CCT 3320 and A. terreus URM 3571, catalysed the oxidation of 2 accompanied by the reduction of I to 4-methylcyclohexanol 1a and, for strain A. terreus CCT 3320, the Baeyer-Villiger oxidation of 1. The Basidomycetes, Trametes versicolor CCB 202, Pycnoporus sanguineus CCB 501 and Trichaptum byssogenum CCB 203, catalysed the oxidation of 2 and the reduction 1, but no Baeyer-Villiger reaction products were detected. In contrast. Trametes rigida CCB 285 catalysed the biotransformation of 1 to 1a, exclusively, in the absence of any detectable Sulfide oxidation reactions. The chemoselective reduction Of (+/-)-2-(phenylthio)cyclohexanone 3 by T. rigida CCB 285 afforded exclusively the (+)-cis-(1R,2S) and (+)-trans-(1S,2S) diastereoisomers of 2-(phenylthio)cyclohexan-1-ol 3a in moderate yields (13% and 27%, respectively) and high enantiomeric excesses (>98%). Chemoselective screening for the reduction of a ketone and/or the oxidation Of a Sulfide group in one pot by whole cells of micro-organisms represents an attractive technique with applications in the development of synthesis of complex molecule hearing different functional groups. (C) 2008 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is presented for spectrophotometric determination of total polyphenols content in wine. The procedure is a modified CUPRAC method based on the reduction of Cu(II), in hydroethanolic medium (pH 7.0) in the presence of neocuproine (2,9-dimethyl-1,10-phenanthroline), by polyphenols, yielding a Cu(I) complexes with maximum absorption peak at 450 nm. The absorbance values are linear (r = 0.998, n = 6) with tannic acid concentrations from 0.4 to 3.6 mu mol L(-1). The limit of detection obtained was 0.41 mu mol L(-1) and relative standard deviation 1.2% (1 mu mol L(-1); n = 8). Recoveries between 80% and 110% (mean value of 95%) were calculated for total polyphenols determination in 14 commercials and 2 synthetic wine samples (with and without sulphite). The proposed procedure is about 1.5 more sensitive than the official Folin-Ciocalteu method. The sensitivities of both methods were compared by the analytical responses of several polyphenols tested in each method. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L(-1) tris(hydroxymethyl)aminomethane and 30 mmol L(-1) 2-hydroxyisobutyric acid,at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 mu m I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Mush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R(2) > 0.9999); limit of detection of 0.5 mg L(-1): inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1-104.5%. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrocatalytic reduction of NO3- (aq) over platinum has been investigated in sulfuric acid solutions with proton concentrations between 1 mM and 50 mM. Cyclic voltammetry indicates that for [H+] < 10 mM, NO3- (aq) is reduced in two distinct regions of potential: one reduction peak occurs at approximately 0.1 V vs. RHE and one occurs at -0.13 V vs. RHE. This second reduction peak has never before been observed, and is not present for proton concentrations >10 mM, where hydrogen electroreduction prevails below 0.0 V vs. RHE. Chronoamperometry shows that the kinetics of the two reduction peaks are distinct, suggesting that the two reduction peaks may correspond to the evolution of different products. Results are discussed in the context of tuning the product selectivity of the electrocatalytic reduction of NO3- (aq). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additions of one to two equivalents of Lewis acids that include magnesium salts to free-radical reduction reactions involving ester functionalized radicals and (1R,2S,5R)-menthyldiphenyltin hydride 4, bis((1R,2S,5R)-menthyl)phenyltin hydride 5, tris((1R,2S,5R)-menthyl)tin hydride 6, bis((1R,2S,5R)-menthyl)-[8-(N,N-dimethylamino)naphthyl]tin hydride 12, bis((1R,2S,5R)-menthyl)-[1-((S)-N,N-dimethylaminoethyl)phenyl]tin hydride 13 or 3α-dimethylstannyl-5α-cholestane 14 result in remarkable enantioselectivities. Examples include (S)-naproxen ethyl ester 16, produced in 74% yield and greater than 99% ee at −78°C from the bromide and 5 in the presence of MgBr2, and ethyl (R)-N-trifluoroacetyl-D-phenylglycinate 18, obtained in 78% yield and 99% ee under identical conditions. Kinetic and computational studies provide insight into the origins of these observations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double perovskite Ba2Bi0.1Sc0.2Co1.7O6-x (BBSC) demonstrates low polarization resistance between 600 and 750 °C due to the high oxygen reduction rate of BBSC as reflected by its large DV and k values, which are derived from the face centered cubic structure and high cobalt content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active sites and the catalytic mechanism of nitrogen-doped graphene in an oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads), which should chemically attach to the active sites, remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New findings supporting the stability of the superoxide ion, O2˙(-), in the presence of the phosphonium cation, [P6,6,6,14](+), are presented. Extended electrochemical investigations of a series of neat phosphonium-based ILs with different anions, including chloride, bis(trifluoromethylsulfonyl)imide and dicyanamide, demonstrate the chemical reversibility of the oxygen reduction process. Quantum chemistry calculations show a short intermolecular distance (r = 3.128 Å) between the superoxide ion and the phosphonium cation. NMR experiments have been performed to assess the degree of long term degradation of [P6,6,6,14](+), in the presence of superoxide and peroxide species, showing no chemically distinct degradation products of importance in reversible air cathodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.