952 resultados para rRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Evidence suggests that giardiasis is a zoonotic disease. The present work aimed to evaluate the genetic identity of Giardia duodenalis isolated from human and dog fecal samples from Belo Horizonte. METHODS: Human and dog fecal samples were cultured for isolation of G. duodenalis. To determine the genotype of the isolates, primers that amplify a specific region in rRNA of the protozoan were used. RESULTS: Two G. duodenalis isolates were obtained, which belong to the subgroup A genotype. CONCLUSIONS: These findings suggest that the transmission of giardiasis follows a zoonotic pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Staphylococcal species are pathogens that are responsible for outbreaks of foodborne diseases. The aim of this study was to investigate the prevalence of enterotoxin-genes and the antimicrobial resistance profile in staphylococcus coagulase-negative (CoNS) and coagulasepositive (CoPS) isolates from black pudding in southern Brazil. METHODS: Two hundred typical and atypical colonies from Baird-Parker agar were inoculated on mannitol salt agar. Eighty-two mannitol-positive staphylococci were submitted to conventional biochemical tests and antimicrobial susceptibility profiling. The presence of coagulase (coa) and enterotoxin (se) genes was investigated by polymerase chain reaction. RESULTS: The isolates were divided into 2 groups: 75.6% (62/82) were CoNS and 24.4% (20/82) were CoPS. The biochemical tests identified 9 species, of which Staphylococcus saprophyticus (37.8%) and Staphylococcus carnosus (15.9%) were the most prevalent. Antimicrobial susceptibility tests showed resistance phenotypes to antibiotics widely administered in humans, such as gentamicin, tetracycline, chloramphenicol, and erythromycin. The coa gene was detected in 19.5% (16/82) of the strains and 4 polymorphic DNA fragments were observed. Five CoNS isolates carrying the coa gene were submitted for 16S rRNA sequencing and 3 showed similarity with CoNS. Forty strains were positive for at least 1 enterotoxin-encoding gene, the genes most frequently detected were sea (28.6%) and seb (27.5%). CONCLUSIONS: The presence of antimicrobial resistant and enterotoxin-encoding genes in staphylococci isolates from black pudding indicated that this fermented food may represent a potential health risk, since staphylococci present in food could cause foodborne diseases or be a possible route for the transfer of antimicrobial resistance to humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Most studies that have evaluated the stomachs of patients with Chagas disease were performed before the discovery of Helicobacter pylori and used no control groups. This study compared the gastric features of chagasic and non-chagasic patients and assessed whether gastritis could be associated with Chagas disease. Methods Gastric biopsy samples were taken from patients who underwent endoscopy for histological analysis according to the Updated Sydney System. H. pylori infection was assessed by histology, 16S ribosomal ribonucleic acid (rRNA) polymerase chain reaction (PCR), serology and the 13C-urea breath test. Patients were considered H. pylori-negative when all of these diagnostic tests were negative. Clinical and socio-demographic data were obtained by reviewing medical records and using a questionnaire. Results The prevalence of H. pylori infection (70.3% versus 71.7%) and chronic gastritis (92.2% versus 85%) was similar in the chagasic and non-chagasic groups, respectively; such as peptic ulcer, atrophy and intestinal metaplasia. Gastritis was associated with H. pylori infection independent of Chagas disease in a log-binomial regression model. However, the chagasic H. pylori-negative patients showed a significantly higher grade of mononuclear (in the corpus) and polymorphonuclear (PMN) (in the antrum) cell infiltration. Additionally, the patients with the digestive form of Chagas disease showed a significantly lower prevalence of corpus atrophy than those with other clinical forms. Conclusions The prevalence of H. pylori infection and of gastric histological and endoscopic features was similar among the chagasic and non-chagasic patients. Additionally, this is the first controlled study to demonstrate that H. pylori is the major cause of gastritis in patients with Chagas disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Antibiotic resistance is the main factor that affects the efficacy of current therapeutic regimens against Helicobacter pylori. This study aimed to determine the rates of resistance to efficacy clarithromycin, amoxicillin, tetracycline, levofloxacin and metronidazole among H. pylori strains isolated from Turkish patients with dyspepsia. METHODS: H. pylori was cultured from corpus and antrum biopsies that were collected from patients with dyspeptic symptoms, and the antimicrobial susceptibility of H. pylori was determined using the E-test (clarithromycin, amoxicillin, tetracycline, metronidazole and levofloxacin) according to the EUCAST breakpoints. Point mutations in the 23S rRNA gene of clarithromycin-resistant strains were investigated using real-time PCR. RESULTS: A total of 98 H. pylori strains were isolated, all of which were susceptible to amoxicillin and tetracycline. Of these strains, 36.7% (36/98) were resistant to clarithromycin, 35.5% (34/98) were resistant to metronidazole, and 29.5% (29/98) were resistant to levofloxacin. Multiple resistance was detected in 19.3% of the isolates. The A2143G and A2144G point mutations in the 23S rRNA-encoding gene were found in all 36 (100%) of the clarithromycin-resistant strains. Additionally, the levofloxacin MIC values increased to 32 mg/L in our H. pylori strains. Finally, among the clarithromycin-resistant strains, 27.2% were resistant to levofloxacin, and 45.4% were resistant to metronidazole. CONCLUSIONS: We conclude that treatment failure after clarithromycin- or levofloxacin-based triple therapy is not surprising and that metronidazole is not a reliable agent for the eradication of H. pylori infection in Turkey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: INTRODUCTION : This study describes the occurrence of trypanosomatids in phlebotomines in Brasília, Brazil. METHODS : Two hundred and ten females of 13 sand fly species were analyzed by polymerase chain reaction (PCR) using different molecular markers (D7 24Sα rRNA, kDNA, and ITS1) and sequencing. RESULTS : PCR revealed trypanosomatid-positive samples from Nyssomyia whitmani and Evandromyia evandroi, which were negative by kDNA and ITS1 Leishmania-specific PCRs. DNA sequence analysis of D7 24Sα rRNA amplicons indicated the occurrence of Blastocrithidia sp. and Trypanosoma sp. in Nyssomyia whitmani and Evandromyia evandroi, respectively. CONCLUSIONS : Two trypanosomatid species other than Leishmania sp. were found to circulate in sand flies in Central Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As leishmanioses são um grupo de doenças causadas pelo parasita protozoário Leishmania sp. Na Bacia mediterrânica, Leishmania infantum, é a principal espécie causadora de leishmaniose visceral, a forma mais severa da doença, sendo L. major um dos agentes etiológicos da leishmaniose cutânea. Apesar de se considerar que estes parasitas têm uma reprodução essencialmente clonal, nos últimos 20 anos tem vindo a ser descrita a recombinação genética entre diferentes estirpes e espécies, com ocorrência de híbridos naturais, quer no Velho quer no Novo Mundo. Recentemente, em Portugal, foram isoladas e identificadas pela primeira vez, estirpes híbridas de L. infantum/L. major. O presente estudo teve como principais objetivos, a pesquisa de “novas espécies” de Leishmania e a análise do comportamento “in vitro” de estirpes parentais e híbridas de L. infantum e L. major. Numa primeira parte do trabalho efetuou-se a cultura e pesquisa de DNA de Leishmania sp., em amostras de sangue medular de 229 cães provenientes de uma região endémica de Portugal, utilizando diferentes marcadores moleculares (kDNA, ITS1 e SSU rRNA) e protocolos de PCR. Não foi encontrado DNA de espécies híbridas, tendo-se no entanto, identificado DNA de Leishmania sp. em 45,85% (105/229) das amostras, incluindo cães sem sinais clínicos. Na segunda parte do trabalho, realizaram-se diversos ensaios “in vitro” com estirpes híbridas naturais L. infantum/L. major e parentais L. infantum e L. major. Em condições normais de crescimento, observou-se um padrão de crescimento distinto para cada estirpe estudada. Em condições de “stress” oxidativo, destacou-se uma diferença significativa entre as duas estirpes híbridas estudadas. Em condições de “stress” nutricional, as estirpes não apresentaram diferenças entre si. Após avaliação da suscetibilidade das estirpes na presença de Anfotericina B, todas se mostraram suscetíveis, com concentrações inibitórias (CI50) entre 0.21 e 1.15 μg/mL. Após infeção em linhas celulares monocíticas, não se verificaram diferenças estatisticamente significativas na taxa e intensidade de infeção das estirpes híbridas em comparação às putativas parentais. Os resultados obtidos, contribuíram para um melhor conhecimento sobre o comportamento biológico destas estirpes híbridas naturais L. infantum/L. major. Estas demonstraram um comportamento “in vitro” intermédio, relativamente às estirpes parentais. Estes resultados poderão servir de base para o desenvolvimento de outros estudos com estas “novas espécies”, nomeadamente estudos de patogenicidade “in vivo” e o papel de biomarcadores de virulência, que permitam um potencial prognóstico da infeção e avaliação do seu risco epidemiológico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Anaerobic bioremediation is an important alternative for the common aerobic cleanup of subsurface petroleum-contaminated soil and water. Microbial communities involved in anaerobic oil biodegradation are scarcely studied, and only few mechanisms of anaerobic hydrocarbons degradation are described. In this work, microbial degradation of aliphatic hydrocarbons (AHC) was studied by using culture-dependent and culture-independent approaches. Hexadecane and hexadecene-degrading microbial communities were enriched under sulfate-reducing and methanogenic conditions. The microorganisms present in the enriched cultures were identified by 16S rRNA gene sequencing. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El uso desmedido de antibióticos, en especial en los animales que son destinados al consumo humano, produjo la aparición de cepas bacterianas resistentes y favoreció la presencia de residuos de esas sustancias en los alimentos. Esta situación ha sido relacionada con la aparición de alergias, trastornos gastrointestinales y otros problemas que han puesto en riesgo la salud de la población y han promovido una presión creciente de los consumidores y de los entes reguladores para que el sector de la producción de alimentos no utilice antimicrobianos y evite la presencia de sus residuos. El objetivo del trabajo es evaluar la capacidad de las sustancias con actividad antimicrobiana, producida por la microbiota natural, para inhibir el desarrollo de bacterias patógenas responsables de causar enfermedades en terneros jóvenes. Se utilizarán bacterias ácido lácticas autóctonas aisladas a partir de intestinos (duodeno, yeyuno, íleon, colon y ciego), cavidad bucal de terneros de crianza artificial y de vagina de vacas en la etapa pre-parto y que forman parte del cepario del Laboratorio de Análisis de Alimentos, DSPV. Los microorganismos que demuestren capacidad para producir sustancias antimicrobianas serán identificados utilizando técnicas moleculares (amplificación del 16S rRNA, secuenciación y comparación en bases de datos). Las sustancias producidas por los microorganismos serán purificadas antes de analizar su capacidad inhibitoria. Posteriormente, se evaluará el efecto de los agentes físicos (temperatura) y químicos (solventes orgánicos, ácidos, tripsina, proteinasa K y pepsina) sobre dicha capacidad.