600 resultados para prostaglandin F


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer that has metastasized to bone is currently an incurable disease, causing significant morbidity and mortality. The aim of this thesis work was to elucidate molecular mechanisms of bone metastasis and thereby gain insights into novel therapeutic approaches. First, we found that L‐serine biosynthesis genes, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase (PSPH), were up‐regulated in highly bone metastatic MDA‐MB‐231(SA) cells as compared with the parental breast cancer cell line. Knockdown of serine biosynthesis inhibited proliferation of MDA‐MB‐231(SA) cells, and L‐serine was essential for the formation of bone resorbing osteoclasts. Clinical data demonstrated that high expression of PHGDH and PSAT1 was associated with decreased relapse‐free and overall survival and with features typical of poor outcome in breast cancer. Second, RNA interference screening pointed out heparan sulfate 6‐O‐sulfotransferase 2 (HS6ST2) as a critical gene for transforming growth factor β (TGF‐β)‐induced interleukin 11 (IL‐11) production in MDA‐MB‐231(SA) cells. Exogenous heparan sulfate glycosaminoglycans heparin and K5‐NSOS also inhibited TGF‐β‐induced IL‐11 production in MDA‐MB‐231(SA) cells. Furthermore, K5‐NSOS decreased osteolytic lesion area and tumor burden in bone in mice. Third, we discovered that the microRNAs miR‐204, ‐211 and ‐379 inhibited IL‐11 expression in MDA‐MB‐231(SA) cells through direct targeting of the IL‐11 mRNA. MiR‐379 also inhibited Smad‐mediated signaling. Gene expression profiling of miR‐204 and ‐379 transfected cells indicated that these microRNAs down‐regulate several bone metastasis‐relevant genes, including prostaglandin‐endoperoxide synthase 2 (PTGS2). Taken together, this study identified three potential treatment strategies for bone metastatic breast cancer: inhibition of serine biosynthesis, heparan sulfate glycosaminoglycans and restoration of miR‐204/‐211/‐379.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an <FONT FACE="Symbol">afont>1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM), platelet aggregating factor (PAF; 0.3 µM) and U44619 (a thromboxane analogue; 1.0 µM), and also endothelin-1 (ET-1; 0.5 µM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration <FONT FACE="Symbol">³font>30 min) or short-term (STP; <30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, <FONT FACE="Symbol">afont>-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early systemic arterial hypotension is a common clinical feature of Pseudomonas septicemia. To determine if Pseudomonas aeruginosa endotoxin induces the release of endothelium-derived nitric oxide (EDNO), an endogenous nitrovasodilator, segments of canine femoral, renal, hepatic, superior mesenteric, and left circumflex coronary arteries were suspended in organ chambers (physiological salt solution, 95% O2/5% CO2, pH 7.4, 37oC) to measure isometric force. In arterial segments contracted with 2 µM prostaglandin F2<FONT FACE="Symbol">afont>, Pseudomonas endotoxin (lipopolysaccharide (LPS) serotype 10(Habs) from Pseudomonas aeruginosa (0.05 to 0.50 mg/ml)) induced concentration-dependent relaxation of segments with endothelium (P<0.05) but no significant change in tension of arteries without endothelium. Endothelium-dependent relaxation in response to Pseudomonas LPS occurred in the presence of 1 µM indomethacin, but could be blocked in the coronary artery with 10 µM NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthesis from L-arginine. The inhibitory effect of L-NMMA on LPS-mediated vasorelaxation of the coronary artery could be reversed by exogenous 100 µM L-arginine but not by 100 µM D-arginine. These experiments indicate that Pseudomonas endotoxin induces synthesis of nitric oxide from L-arginine by the vascular endothelium. LPS-mediated production of EDNO by the endothelium, possibly through the action of constitutive nitric oxide synthase (NOSc), may decrease systemic vascular resistance and may be the mechanism of early hypotension characteristic of Pseudomonas septicemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of <FONT FACE="Symbol">afont>1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (<FONT FACE="Symbol">»font>75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2<FONT FACE="Symbol">afont> (PGF2<FONT FACE="Symbol">afont>; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2<FONT FACE="Symbol">afont> from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2) was significantly increased in cannulated (Cn) rats, compared with naive (Nv) or sham-operated (Sh) rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%). The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD). This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL) and to increases in high density lipoproteins (HDL). Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc.) in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concomitant use of angiotensin-converting enzyme inhibitors and aspirin may cause pharmacological antagonism. Hence we examined the effect of aspirin on the neurohormonal function and hemodynamic response to captopril in heart failure patients. Between April 1999 and August 2000, 40 patients were randomized into four equal groups: 1) captopril, 2) aspirin, 3) captopril-aspirin: captopril was given alone on the first day, followed by aspirin on the remaining days, and 4) aspirin-captopril: aspirin was given alone on the first day, followed by captopril on the remaining days. Hemodynamic, norepinephrine and prostaglandin measurements were performed pre- and post-medication for 4 days. Captopril (50 mg) was given orally every 8 h and 300 mg aspirin was given on the first day, and 100 mg/day thereafter. In the captopril group and only on the first day of captopril-aspirin, captopril produced increases in cardiac index (2.1 ± 0.6 to 2.5 ± 0.5 l min-1 m-2, P<0.0001), and reduced peripheral vascular resistance (1980 ± 580 to 1545 ± 506 dyn s-1 cm-5/m², P<0.0001) and pulmonary wedge pressure (20 ± 4 to 15 ± 4 mmHg, P<0.0001). In contrast, aspirin alone or associated with captopril showed no significant hemodynamic changes. Norepinephrine decreased (P<0.02) only in the captopril group. Prostaglandin levels did not differ significantly among groups. Thus, aspirin compromises the short-term hemodynamic and neurohormonal effects of captopril in patients with acute decompensated heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are only a few studies on the molecular mechanisms underlying the peripheral antihyperalgesic effect of opioids. The aim of this study was to investigate the molecular bases of the peripheral antihyperalgesic effect of fentanyl in a model of prostaglandin-induced chemical hyperalgesia. Prostaglandin E2 (1.4 nmol) injected into one hind paw of male Wistar rats (200-250 g, N = 6 in each experimental or control group) pretreated with indomethacin (2.5 mg/kg) potentiated the nocifensive response to formalin (1%) injection made 60 min later. Drugs applied locally 30 min after prostaglandin E2 induced the following effects: fentanyl (0.1-1.0 nmol) caused a dose-dependent reversal of the hyperalgesic state, naloxone (2 nmol) co-injected with fentanyl (1 nmol) completely reversed the antihyperalgesic effect, Nomega-nitro-L-arginine (NOARG, 0.05-0.2 µmol) in combination with fentanyl (1.0 nmol) caused a dose-dependent inhibition of the antihyperalgesic effect of fentanyl, co-administration of L-arginine (0.5 µmol) with NOARG (0.2 µmol) plus fentanyl (1.0 nmol) fully restored the antihyperalgesic effect, and the cyclic-GMP phosphodiesterase inhibitor UK-114,542-27 (5-[2-ethoxy-5-(morpholinylacetyl) phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo [4,3-d<FONT FACE=Symbol>]-FONT>pyrimidin-7-one methanesulfonate monohydrate; 0.5-2.0 µmol) potentiated a subeffective dose of fentanyl (0.1 nmol) in a dose-dependent manner. However, UK-114,542-27 (2.0 µmol) injected alone did not produce this antihyperalgesic effect. Systemically administered fentanyl (1.0 nmol, sc) did not cause antinociception. Taken together, these results support the view that fentanyl reverses prostaglandin E2-induced hyperalgesia, probably by activating an opioid receptor at the periphery, and furthermore the L-arginine/nitric oxide/cyclic-GMP pathway may mediate this peripheral effect of fentanyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present investigation was to compare the sensitivity of an electronic nociceptive mechanical paw test with classical mechanical tests to quantify the intensity variation of inflammatory nociception. The electronic pressure-meter test consists of inducing the hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared with the classical von Frey filaments test and with the rat paw constant pressure test, a modification of the Randall and Selitto test developed by our group. When comparing the three methods, the electronic pressure-meter and the rat paw constant pressure test, but not the von Frey filaments test, detected time vs treatment interactions in prostaglandin E2 (PGE2)-induced hypernociception. Both methods also detected the PGE2-induced hypernociception in dose- (50-400 ng/paw) and time- (1-4 h) dependent manners, and time vs treatment interactions induced by carrageenin (25-400 µg/paw). Furthermore, the electronic pressure-meter test was more sensitive at early times, whereas the constant pressure test was more sensitive at later times. Moreover, the electronic pressure-meter test detected the dose-dependent antinociceptive effect of local indomethacin (30-300 µg/paw) and dipyrone (80-320 µg/paw) on carrageenin- (200 µg/paw) and PGE2- (100 ng/paw) induced hypernociception, respectively, and also detected the ineffectiveness of indomethacin (300 µg) on the effect of PGE2. Our results show that the electronic pressure-meter provides a sensitive, objective and quantitative mechanical nociceptive test that could be useful to characterize new nociceptive inflammatory mediators and also to evaluate new peripheral analgesic substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present investigation was to describe and validate an electronic mechanical test for quantification of the intensity of inflammatory nociception in mice. The electronic pressure-meter test consists of inducing the animal hindpaw flexion reflex by poking the plantar region with a polypropylene pipette tip adapted to a hand-held force transducer. This method was compared to the classical von Frey filaments test in which pressure intensity is automatically recorded after the nociceptive hindpaw flexion reflex. The electronic pressure-meter and the von Frey filaments were used to detect time versus treatment interactions of carrageenin-induced hypernociception. In two separate experiments, the electronic pressure-meter was more sensitive than the von Frey filaments for the detection of the increase in nociception (hypernociception) induced by small doses of carrageenin (30 µg). The electronic pressure-meter detected the antinociceptive effect of non-steroidal drugs in a dose-dependent manner. Indomethacin administered intraperitoneally (1.8-15 mg/kg) or intraplantarly (30-300 µg/paw) prevented the hypersensitive effect of carrageenin (100 µg/paw). The electronic pressure-meter also detected the hypernociceptive effect of prostaglandin E2 (PGE2; 10-100 ng) in a dose-dependent manner. The hypernociceptive effect of PGE2 (100 ng) was blocked by dipyrone (160 and 320 µg/paw) but not by intraplantar administration of indomethacin (300 µg/paw). The present results validate the use of the electronic pressure-meter as more sensitive than the von Frey filaments in mice. Furthermore, it is an objective and quantitative nociceptive test for the evaluation of the peripheral antinociceptive effect of anti-inflammatory analgesic drugs, which inhibit prostaglandin synthesis (indomethacin) or directly block the ongoing hypernociception (dipyrone).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO), a free radical gas produced endogenously from the amino acid L-arginine by NO synthase (NOS), has important functions in modulating vasopressin and oxytocin secretion from the hypothalamo-neurohypophyseal system. NO production is stimulated during increased functional activity of magnocellular neurons, in parallel with plastic changes of the supraoptic nucleus (SON) and paraventricular nucleus. Electrophysiological data recorded from the SON of hypothalamic slices indicate that NO inhibits firing of phasic and non-phasic neurons, while L-NAME, an NOS inhibitor, increases their activity. Results from measurement of neurohypophyseal hormones are more variable. Overall, however, it appears that NO, tonically produced in the forebrain, inhibits vasopressin and oxytocin secretion during normovolemic, isosmotic conditions. During osmotic stimulation, dehydration, hypovolemia and hemorrhage, as well as high plasma levels of angiotensin II, NO inhibition of vasopressin neurons is removed, while that of oxytocin neurons is enhanced. This produces a preferential release of vasopressin over oxytocin important for correction of fluid imbalance. During late pregnancy and throughout lactation, fluid homeostasis is altered and expression of NOS in the SON is down- and up-regulated, respectively, in parallel with plastic changes of the magnocellular system. NO inhibition of magnocellular neurons involves GABA and prostaglandin synthesis and the signal-transduction mechanism is independent of the cGMP-pathway. Plasma hormone levels are unaffected by icv 1H-[1, 2, 4]oxadiazolo-[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor) or 8-Br-cGMP administered to conscious rats. Moreover, cGMP does not increase in homogenates of the neural lobe and in microdialysates of the SON when NO synthesis is enhanced during osmotic stimulation. Among alternative signal-transduction pathways, nitrosylation of target proteins affecting activity of ion channels is considered.