931 resultados para projections
Resumo:
Latest issue consulted: 1990 ed.
Resumo:
Bibliography: p. 65-66.
Resumo:
Mode of access: Internet.
Resumo:
Principal authors are Paul N. Van de Water and Rosemary D. Marcuss.
Resumo:
Latest issue consulted: 1992.
Resumo:
"Maine Job Service"--P. [4] of cover.
Resumo:
Chiefly tables.
Resumo:
"EDR-33"--Cover.
Resumo:
"Issued June 2003"
Resumo:
"Issued December 2004."
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
"Catalog number 63437X"--P. [4] of cover.
Resumo:
It is not possible to trace the early demographic development of the Turks and Caicos Islands due to lack of data, but what is evident from the limited historical data is that population developments beginning in 1921 and up to 1970 followed the same path as other Caribbean Islands. The Turks and Caicos Islands have experienced unprecedented population growth over the last twenty years due largely to the immigration of people from neighbouring countries seeking employment created by the development of tourism. Such rapid population changes for the small island group present many social, economic, environmental and political challenges. Population projections are essential so that policymakers and decision makers can make informed judgements about future strategies, policies and programmes.
Resumo:
We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a third tier area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediatesized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.