937 resultados para principal components analysis (PCA) algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract:The objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty-nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been growing interest in composite indicators as an efficient tool of analysis and a method of prioritizing policies. This paper presents a composite index of intermediary determinants of child health using a multivariate statistical approach. The index shows how specific determinants of child health vary across Colombian departments (administrative subdivisions). We used data collected from the 2010 Colombian Demographic and Health Survey (DHS) for 32 departments and the capital city, Bogotá. Adapting the conceptual framework of Commission on Social Determinants of Health (CSDH), five dimensions related to child health are represented in the index: material circumstances, behavioural factors, psychosocial factors, biological factors and the health system. In order to generate the weight of the variables, and taking into account the discrete nature of the data, principal component analysis (PCA) using polychoric correlations was employed in constructing the index. From this method five principal components were selected. The index was estimated using a weighted average of the retained components. A hierarchical cluster analysis was also carried out. The results show that the biggest differences in intermediary determinants of child health are associated with health care before and during delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a composite index of early childhood health using a multivariate statistical approach. The index shows how child health varies across Colombian departments, -administrative subdivisions-. In recent years there has been growing interest in composite indicators as an efficient analysis tool and a way of prioritizing policies. These indicators not only enable multi-dimensional phenomena to be simplified but also make it easier to measure, visualize, monitor and compare a country’s performance in particular issues. We used data collected from the Colombian Demographic and Health Survey, DHS, for 32 departments and the capital city, Bogotá, in 2005 and 2010. The variables included in the index provide a measure of three dimensions related to child health: health status, health determinants and the health system. In order to generate the weight of the variables and take into account the discrete nature of the data, we employed a principal component analysis, PCA, using polychoric correlation. From this method, five principal components were selected. The index was estimated using a weighted average of the components retained. A hierarchical cluster analysis was also carried out. We observed that the departments ranking in the lowest positions are located on the Colombian periphery. They are departments with low per capita incomes and they present critical social indicators. The results suggest that the regional disparities in child health may be associated with differences in parental characteristics, household conditions and economic development levels, which makes clear the importance of context in the study of child health in Colombia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Emerging polyploids may depend on environmental niche shifts for successful establishment. Using the alpine plant Ranunculus kuepferi as a model system, we explore the niche shift hypothesis at different spatial resolutions and in contrasting parts of the species range. Location: European Alps. Methods: We sampled 12 individuals from each of 102 populations of R. kuepferi across the Alps, determined their ploidy levels, derived coarse-grain (100x100m) environmental descriptors for all sampling sites by downscaling WorldClim maps, and calculated fine-scale environmental descriptors (2x2m) from indicator values of the vegetation accompanying the sampled individuals. Both coarse and fine-scale variables were further computed for 8239 vegetation plots from across the Alps. Subsequently, we compared niche optima and breadths of diploid and tetraploid cytotypes by combining principal components analysis and kernel smoothing procedures. Comparisons were done separately for coarse and fine-grain data sets and for sympatric, allopatric and the total set of populations. Results: All comparisons indicate that the niches of the two cytotypes differ in optima and/or breadths, but results vary in important details. The whole-range analysis suggests differentiation along the temperature gradient to be most important. However, sympatric comparisons indicate that this climatic shift was not a direct response to competition with diploid ancestors. Moreover, fine-grained analyses demonstrate niche contraction of tetraploids, especially in the sympatric range, that goes undetected with coarse-grained data. Main conclusions: Although the niche optima of the two cytotypes differ, separation along ecological gradients was probably less decisive for polyploid establishment than a shift towards facultative apomixis, a particularly effective strategy to avoid minority cytotype exclusion. In addition, our results suggest that coarse-grained analyses overestimate niche breadths of widely distributed taxa. Niche comparison analyses should hence be conducted at environmental data resolutions appropriate for the organism and question under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psychometric analysis of the AF5 multidimensional scale of self-concept in a sample of adolescents and adults in Catalonia. The aim of this study is to carry out a psychometric study of the AF5 scale in a sample of 4.825 Catalan subjects from 11 to 63 years-old. They are students from secondary compulsory education (ESO), from high school, middle-level vocational training (CFGM) and from the university. Using a principal component analysis (PCA) the theoretical validity of the components is established and the reliability of the instrument is also analyzed. Differential analyses are performed by gender and normative group using a 2 6 factorial design. The normative group variable includes the different levels classifi ed into 6 sub-groups: university, post-compulsory secondary education (high school and CFGM), 4th of ESO, 3rd of ESO, 2nd of ESO and 1st of ESO. The results indicate that the reliability of the Catalan version of the scale is similar to the original scale. The factorial structure also fi ts with the original model established beforehand. Signifi cant differences by normative group in the four components of self-concept explored (social, family, academic/occupational and physical) are observed. By gender, signifi cant differences appear in the component of physical self-concept, academic and social but not in the family component

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting) and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA) is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for the analysis in herbal medicines using a photo diode array detector. This method has been applied for quantification of epicatechin in commercialized herbal medicines sold as espinheira-santa in Brazil and in the standard sample of M. ilicifolia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of automated correlation optimized warping (ACOW) to the correction of retention time shift in the chromatographic fingerprints of Radix Puerariae thomsonii (RPT) was investigated. Twenty-seven samples were extracted from 9 batches of RPT products. The fingerprints of the 27 samples were established by the HPLC method. Because there is a retention time shift in the established fingerprints, the quality of these samples cannot be correctly evaluated by using similarity estimation and principal component analysis (PCA). Thus, the ACOW method was used to align these fingerprints. In the ACOW procedure, the warping parameters, which have a significant influence on the alignment result, were optimized by an automated algorithm. After correcting the retention time shift, the quality of these RPT samples was correctly evaluated by similarity estimation and PCA. It is demonstrated that ACOW is a practical method for aligning the chromatographic fingerprints of RPT. The combination of ACOW, similarity estimation, and PCA is shown to be a promising method for evaluating the quality of Traditional Chinese Medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calyxes of Hibiscus sabdariffa are used in traditional medicine around the world. However, quality assurance protocols and chemical variability have not been previously analyzed. In the present study, chemical characterization of a set of samples of H. sabdariffa calyxes commercialized in Colombia was accomplished with the aim to explore the chemical variability among them. Chemometrics-based analyses on the data obtained from the HPLC-UV-DAD-derived profiles were then performed. Thus, the pre-processed single-wavelength data were subjected to principal component analysis (PCA). The PCA-derived results evidenced different groups which were well-correlated to the corresponding total phenolic and total anthocyanin contents. Multi-wavelength chromatographic (HPLC-UV-DAD surfaces) data were additionally examined via parallel factor analysis (PARAFAC) as data reduction method and the obtained loadings were subsequently submitted to PCA and orthogonal partial least squares discriminant analysis (OPLS-DA). Results were thus consistent with those from single-wavelength data. PCA loadings were employed to determine those chemical components responsible for the data variance and OPLS-DA model, constructed from PARAFAC loadings, and indicated differentiation according total anthocyanin contents among samples. The present chemometric analysis therefore demonstrated to be an excellent tool for differentiation of H. sabdariffacalyxes according to their chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.