917 resultados para power engineering computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Blueprint for Affective Computing: A sourcebook and manual is the very first attempt to ground affective computing within the disciplines of psychology, affective neuroscience, and philosophy. This book illustrates the contributions of each of these disciplines to the development of the ever-growing field of affective computing. In addition, it demonstrates practical examples of cross-fertilization between disciplines in order to highlight the need for integration of computer science, engineering and the affective sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the evaluation in power consumption of a clocking technique for pipelined designs. The technique shows a dynamic power consumption saving of around 30% over a conventional global clocking mechanism. The results were obtained from a series of experiments of a systolic circuit implemented in Virtex-II devices. The conversion from a global-clocked pipelined design to the proposed technique is straightforward, preserving the original datapath design. The savings can be used immediately either as a power reduction benefit or to increase the frequency of operation of a design for the same power consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lighting and small power will typically account for more than half of the total electricity consumption in an office building. Significant variations in electricity used by different tenants suggest that occupants can have a significant impact on the electricity demand for these end-uses. Yet current modelling techniques fail to represent the interaction between occupant and the building environment in a realistic manner. Understanding the impact of such behaviours is crucial to improve the methodology behind current energy modelling techniques, aiming to minimise the significant gap between predicted and in-use performance of buildings. A better understanding of the impact of occupant behaviour on electricity consumption can also inform appropriate energy saving strategies focused on behavioural change. This paper reports on a study aiming to assess the intent of occupants to switch off lighting and appliances when not in use in office buildings. Based on the Theory of Planned Behaviour, the assessment takes the form of a questionnaire and investigates three predictors to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived behavioural control. The paper details the development of the assessment procedure and discusses preliminary findings from the study. The questionnaire results are compared against electricity consumption data for individual zones within a multi-tenanted office building. Initial results demonstrate a statistically significant correlation between perceived behavioural control and energy consumption for lighting and small power

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This paper aims to design an evaluation method that enables an organization to assess its current IT landscape and provide readiness assessment prior to Software as a Service (SaaS) adoption. Design/methodology/approach: The research employs a mixed of quantitative and qualitative approaches for conducting an IT application assessment. Quantitative data such as end user’s feedback on the IT applications contribute to the technical impact on efficiency and productivity. Qualitative data such as business domain, business services and IT application cost drivers are used to determine the business value of the IT applications in an organization. Findings: The assessment of IT applications leads to decisions on suitability of each IT application that can be migrated to cloud environment. Research limitations/implications: The evaluation of how a particular IT application impacts on a business service is done based on the logical interpretation. Data mining method is suggested in order to derive the patterns of the IT application capabilities. Practical implications: This method has been applied in a local council in UK. This helps the council to decide the future status of the IT applications for cost saving purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded computer systems equipped with wireless communication transceivers are nowadays used in a vast number of application scenarios. Energy consumption is important in many of these scenarios, as systems are battery operated and long maintenance-free operation is required. To achieve this goal, embedded systems employ low-power communication transceivers and protocols. However, currently used protocols cannot operate efficiently when communication channels are highly erroneous. In this study, we show how average diversity combining (ADC) can be used in state-of-the-art low-power communication protocols. This novel approach improves transmission reliability and in consequence energy consumption and transmission latency in the presence of erroneous channels. Using a testbed, we show that highly erroneous channels are indeed a common occurrence in situations, where low-power systems are used and we demonstrate that ADC improves low-power communication dramatically.