868 resultados para powder sintering
Resumo:
A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.
Resumo:
Nanocrystals and powders of KMgF3 doped with Eu2+ were synthesized by the microemulsion method and the solvothermal process, respectively. The emission and excitation spectra of KMgF3:Eu2+ phosphors were measured and compared with those of the samples synthesized through a solid. state reaction, Bridgman-Stockbarger method, and mild hydrothermal technique. The KMgF3: Eu2+ samples synthesized by means of the microemulsion method and the solvothermal process show only a sharp emission peak located at 360 nm, in the emission spectra, which arises from the f -> f(P-6(1/2)-> S-8(1/2)) transition of Eu2+. The broad emission bands appear at 420 nm,,which arises from Eu2+ <- O2- cannot be observed(in the mild hydrothermal and single crystal samples, the emission peak at 420 nm besides the emission of Eu2+ at 360 nm is observed). In the excitation spectrum of the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process, the excitation peaks show an intensive blue shift. The blue shift can he attributed to the lower oxygenic content in the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process.
Resumo:
Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.
Resumo:
The effects of CaCO3 on the crystallization behavior of polypropylene (PP) were studied by means of DSC and WAXD. The average sizes of the CaCO3 powders used were 0.1 mum (UC) and 0.5 mum (GC), respectively. The PP/CaCO3 composites at compositions of 1 phr and 10 phr were investigated. The results showed that the addition of CaCO3 reduced the supercooling, the rate of nucleation and the overall rate of crystallization (except for the 10 phr UC/PP sample). The crystallinity of PP was increased and the size distribution of the crystallites of alpha -PP; was: broadened. On the other hand,the crystallization rate of 10 phr UC/PP is 1.5 times higher than that of neat PP. It has an overall rate of crystallization 2 times as much as that of the neat PP and has the maximum crystallinity. The sizes of crystallites and the unit cell parameters of alpha -PP were varied by the addition of CaCO3. beta -PP was formed by addition of Ge and was not detected by addition of UC. The differences of crystallization behaviors of PP might be attributed to the combined effects of the content and size of CaCO3 filled.
Resumo:
Two new concepts for molecular solids, 'local similarity' and 'boundary-preserving isometry', are defined mathematically and a theorem which relates these concepts is formulated. 'Locally similar' solids possess an identical short-range structure and a 'boundary-preserving isometry' is a new mathematical operation on a finite region of a solid that transforms mathematically a given solid to a locally similar one. It is shown further that the existence of such a 'boundary-preserving isometry' in a given solid has infinitely many 'locally similar' solids as a consequence. Chemical implications, referring to the similarity of X-ray powder patterns and patent registration, are discussed as well. These theoretical concepts, which are first introduced in a schematic manner, are proved to exist in nature by the elucidation of the crystal structure of some diketopyrrolopyrrole (DPP) derivatives with surprisingly similar powder patterns. Although the available powder patterns were not indexable, the underlying crystals could be elucidated by using the new technique of ab initio prediction of possible polymorphs and a subsequent Rietveld refinement. Further ab initio packing calculations on other molecules reveal that 'local crystal similarity' is not restricted to DPP derivatives and should also be exhibited by other molecules such as quinacridones. The 'boundary-preserving isometry' is presented as a predictive tool for crystal engineering purposes and attempts to detect it in crystals of the Cambridge Structural Database (CSD) are reported.
Resumo:
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 mu m diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied, it was found that the dispersed CoHCF powder in the PEG paste can generate well-shaped thin-layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well-resolved in-situ MFTIRs spectra, by which a chemical interaction between C = C bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
Resumo:
In this paper, the graft copolymers of styrene to nascent linear polyethylene reactor powders were prepared through plasma graft polymerization. The grafting reaction was initiated by the alkyl radicals formed on the surface of nascent polyethylene with plasma treatment as indicated by electron spin resonance spectra. In graft copolymerization by alkyl radicals, the grafting yield increased with either the plasma power or the plasma treatment lime. Compared with ordinary polyethylene powders, nascent polyethylene reactor powders were found to be more easily plasma-grafted. This has been attributed to the greater sensitivity to irradiation in producing reactive centres under the same conditions. High density polyethylene showed almost the same grafting yield as linear low density polyethylene at 50 degrees C. The surface morphology of nascent polyethylene observed by scanning electron microscope before and after the grafting showed that the silk-like fibrils were not destroyed by plasma treatment.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The impact of astaxanthin-enriched algal powder on auxiliary memory improvement was assessed in BALB/c mice pre-supplemented with different dosages of cracked green algal (Haematococcus pluvialis) powder daily for 30 days. The supplemented mice were first tested over 8 days to find a hidden platform by swimming in a Morris water maze. Then, for 5 days, the mice were used to search for a visible platform in a Morris water maze. After that, the mice practised finding a safe place-an insulated platform in a chamber-for 2 days. During these animal experimental periods, similar algal meals containing astaxanthin at 0, 0.26, 1.3 and 6.4 mg/kg body weight were continuously fed to each group of tested mice. Profiles of latency, distance, speed and the direction angle to the platforms as well as the diving frequency in each group were measured and analyzed. The process of mice jumping up onto the insulated platform and diving down to the copper-shuttered bottom with a 36 V electrical charge were also monitored by automatic video recording. The results of the Morris maze experiment showed that middle dosage of H. pluvialis meals (1.3 mg astaxanthin/kg body weight) significantly shortened the latency and distance required for mice to find a hidden platform. However, there was no obvious change in swim velocity in any of the supplemented groups. In contrast, the visible platform test showed a significant increase in latency and swim distance, and a significant decrease in swim speed for all groups of mice orally supplemented with H. pluvialis powder compared to the placebo group (P < 0.05 or P < 0.01). Mice supplemented with the algal meal hesitantly turned around the original hidden platform, in contract to mice supplemented with placebo, who easily forgot the original location and accepted the visible platform as a new safe place. These results illustrate that astaxanthin-enriched H. pluvialis powder has the auxiliary property of memory improvement. The results from the platform diving test showed that the low and middle dosage of H. pluvialis powder, rather that the high dosage, increased the latency and reduced the frequency of diving from the safe insulated platform to the electrically stimulated copper shutter, especially in the low treatment group (P < 0.05). These results indicate that H. pluvialis powder is associated with dose-dependent memory improvement and that a low dosage of algal powder (<= middle treatment group) is really good for improving the memory.
Resumo:
Polypyromellitimide molding powder has been prepared. In the 78-370 K range, the dependence of the specific heat capacity (c(p)) on the temperature (T) is given by the polynomial: c(p)=0.8163+0.4592X+0.02468X(2)+0.1192X(3)+0.05659X(4) (J K-1 g(-1)) where X=(T-225.5)/144.5. Thermal decomposition in air starts at 716 K, and is complete at 1034 K. The standard combustion enthalpy is Delta(c)H=-26.442 kJ g(-1). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.