989 resultados para plume


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employed ultrasonic transmitters to follow (for up to 48 h) the horizontal and vertical movements of five juvenile (6.8–18.7 kg estimated body mass) bluefin tuna (Thunnus thynnus) in the western North Atlantic (off the eastern shore of Virginia). Our objective was to document the fishes’ behavior and distribution in relation to oceanographic conditions and thus begin to address issues that currently limit population assessments based on aerial surveys. Estimation of the trends in adult and juvenile Atlantic bluefin tuna abundance by aerial surveys, and other fishery-independent measures, is considered a priority. Juvenile bluefin tuna spent the majority of their time over the continental shelf in relatively shallow water (generally less then 40 m deep). Fish used the entire water column in spite of relatively steep vertical thermal gradients (≈24°C at the surface and ≈12°C at 40 m depth), but spent the majority of their time (≈90%) above 15 m and in water warmer then 20°C. Mean swimming speeds ranged from 2.8 to 3.3 knots, and total distance covered from 152 to 289 km (82–156 nmi). Because fish generally remained within relatively con-fined areas, net displacement was only 7.7–52.7 km (4.1–28.4 nmi). Horizontal movements were not correlated with sea surface temperature. We propose that it is unlikely that juvenile bluefin tuna in this area can detect minor horizontal temperature gradients (generally less then 0.5°C/km) because of the steep vertical temperature gradients (up to ≈0.6°C/m) they experience during their regular vertical movements. In contrast, water clarity did appear to influence behavior because the fish remained in the intermediate water mass between the turbid and phytoplankton-rich plume exiting Chesapeake Bay (and similar coastal waters) and the clear oligotrophic water east of the continental shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During laser welding, the keyhole is generated by the recoil pressure induced by the evaporation processes occurring mainly on the front keyhole wall (KW). In order to characterize the evaporation process, we have measured this recoil pressure by using a plume deflection technique, where the plume generated for static conditions (i. e. with no sample displacement) is deflected by a transverse side gas jet. From the measurement of the plume deflection angle, the recoil pressure can be determined as a function of incident intensity and sample material. From these data one can estimate the pressure generated on the front KW, during laser welding. Therefore, the corresponding dynamic pressure exerted by the vapor plume expansion on the rear KW, in contact with the melt pool, can be also estimated. These pressures appear to be in close agreement with those generated by an additional side jet that has been used in previous experiments, for stabilizing the observed melt pool oscillations or fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three spatial structure groups of radionuclides in U and Th series, 210Pb-excess and 137Cs, and 40K were found based on analyzing temporal and spatial datum of their content by factor analysis with oblique rotation in Nhatrang bay. U and Th spatial structure with their contours decreased toward the offshore, ran longshore and divided seawater of bay into two parts with strong gradient on both sides. Inside part located from center of Nhatrang bay toward the seashore with three main deposit centers of their contents higher than 23 Bq/kg.dry for 238U and 40 Bq/kg.dry for 232Th, indicated unstability of shoreline. Almost sediments coming from river extended toward the offshore, were stopped and transported toward southeastern. The outside part was less than above mentioned content. The boundary line between two parts superposed with the constantly limit line of turbid plume in the rainy season. Direct influence of the continental runoff was limited by the 9 Bq/kg.dry contour of 238U, 19 Bq/kg.dry contour of 232Th. Longshore current was a predominant process whereas lateral transport as sifting and winnowing process of finer grains in sediments of Nhatrang bay. Areas that had very low content of 137Cs and 210 Pb-excess adjoining shoreline showed areas being eroded. Accumulation of 137Cs and 210 Pbexcess nearby river mouth characterized for fine compositions of sediments controlled by seasonal plumes and sites further toward the south indicated finer materials transported from river and accumulated in lack of hydrodynamic process. Near shore accumulation of 40K revealed the sediments there originated from bed erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of an opposing wind on the stratification and flow produced by a buoyant plume rising from a heat source on the floor of a ventilated enclosure is investigated. Ventilation openings located at high level on the windward side of the enclosure and at low level on the leeward side allow a wind-driven flow from high to low level, opposite to the buoyancy-driven flow. One of two stable steady flow regimes is established depending on a dimensionless parameter F that characterizes the relative magnitudes of the wind-driven and buoyancy-driven velocities within the enclosure, and on the time history of the flow. A third, unstable steady flow solution is identified. For small opposing winds (small F) a steady, two-layer stratification and displacement ventilation is established. Exterior fluid enters through the lower leeward openings and buoyant interior fluid leaves through the upper windward openings. As the wind speed increases, the opposing wind may cause a reversal in the flow direction. In this case, cool exterior fluid enters through the high windward openings and mixes the interior fluid, which exits through the leeward openings. There are now two possibilities. If the rate of heat input by the source exceeds the rate of heat loss through the leeward openings, the temperature of the interior increases and this flow reversal is only maintained temporarily. The buoyancy force increases with time, the flow reverts to its original direction, and steady two-layer displacement ventilation is re-established and maintained. In this regime, the increase in wind speed increases the depth and temperature of the warm upper layer, and reduces the ventilation flow rate. If, on the other hand, the heat loss exceeds the heat input, the interior cools and the buoyancy-driven flow decreases. The reversed flow is maintained, the stratification is destroyed and mixing ventilation occurs. Further increases in wind speed increase the ventilation rate and decrease the interior temperature. The transitions between the two ventilation flow patterns exhibit hysteresis. The change from displacement ventilation to mixing ventilation occurs at a higher F than the transition from mixing to displacement. Further, we find that the transition from mixing to displacement ventilation occurs at a fixed value of F, whereas the transition from displacement to mixing flow is dependent on the details of the time history of the flow and the geometry of the openings, and is not determined solely by the value of F. Theoretical models that predic t the steady stratification profiles and flow rates for the displacement and mixing ventilation, and the transitions between them, are presented and compared with measurements from laboratory experiments. The transition between these ventilation patterns completely changes the internal environment, and we discuss some of the implications for the natural ventilation of buildings. © 2004 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aircraft emissions of black carbon (BC) contribute to anthropogenic climate forcing and degrade air quality. The smoke number (SN) is the current regulatory measure of aircraft particulate matter emissions and quantifies exhaust plume visibility. Several correlations between SN and the exhaust mass concentration of BC (CBC) have been developed, based on measurements relevant to older aircraft engines. These form the basis of the current standard method used to estimate aircraft BC emissions (First Order Approximation version 3 [FOA3]) for the purposes of environmental impact analyses. In this study, BC with a geometric mean diameter (GMD) of 20, 30, and 60 nm and filter diameters of 19 and 35 mm are used to investigate the effect of particle size and sampling variability on SN measurements. For BC with 20 and 30 nm GMD, corresponding to BC emitted by modern aircraft engines, a smaller SN results from a given CBC than is the case for BC with 60 nm GMD, which is more typical of older engines. An updated correlation between CBC and SNthat accounts for typical size of BC emitted by modern aircraft is proposed. An uncertainty of ±25% accounts for variation in GMD in the range 20-30 nm and for the range of filter diameters. The SN-CBC correlation currently used in FOA3 underestimates by a factor of 2.5-3 for SN <15, implying that current estimates of aircraft BC emissions derived from SN are underestimated by the same factor. Copyright © American Association for Aerosol Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For established axisymmetric turbulent miscible Boussinesq fountains in quiescent uniform environments, expressions are developed for the fluxes of volume, momentum and buoyancy at the outflow from the fountain: the outflow referring to the counterflow at the horizontal plane of the source. The fluxes are expressed in terms of the fountain source conditions and two dimensionless functions of the source Froude number, Fr0: a radial function (relating a horizontal scale of the outflow to the source radius) and a volume flux function (relating the outflow and source volume fluxes). The forms taken by these two functions at low Fr0 and high Fr0 are deduced, thereby providing the outflow fluxes and outflow Froude number solely in terms of the source conditions. For high Fr0, the outflow Froude number, Frout, is shown to be invariant, indicating (by analogy with plumes for which the 'far-field' Froude number is invariant with source Froude number) that the outflow may be regarded as 'far-field' since the fluxes within the fountain have adjusted to attain a balance which is independent of the source conditions. Based on Frout, the fluxes in the plume that forms beyond the fountain outflow are deduced. Finally, from the results of previously published studies, we show that the scalings deduced for fountains are valid for 0.0025 ≲ Fr0 ≲ 1.0 for low Fr0 and Fr0≳ 3.0 for high Fr0. © 2014 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a simple and reliable propulsion system, arcjet thrusters have been used in multiple satellite missions. In order to improve the efficiency of arcjet thrusters, energy dissipation study was carried out in a 1 kW arcjet thruster with pure N2, H2-N2 and H2 as the propellant. Using a 698 nm interference filter, thermal radiation was isolated from arc and plume emissions and the internal nozzle temperature was obtained by converting the thermal radiation signals. Results show that the addition of hydrogen leads to higher nozzle temperature, which is the determining factor for the mode of arc root attachment. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures. Output energy distribution analysis shows that losses from frozen flow and exhaust thermal losses are the main parts in limiting the efficiency of arcjet thrusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a simple and reliable propulsion system, arcjet thrusters have been used in multiple satellite missions. In order to improve the efficiency of arcjet thrusters, energy dissipation study was carried out in a 1 kW arcjet thruster with pure N2, H2-N2 and H2 as the propellant. Using a 698 nm interference filter, thermal radiation was isolated from arc and plume emissions and the internal nozzle temperature was obtained by converting the thermal radiation signals. Results show that the addition of hydrogen leads to higher nozzle temperature, which is the determining factor for the mode of arc root attachment. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures. Output energy distribution analysis shows that losses from frozen flow and exhaust thermal losses are the main parts in limiting the efficiency of arcjet thrusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical processes in estuarine and coastal waters often occur on temporally and spatially small scales, resulting in variability of metal speciation and dissolved concentrations. Thus, surveys, which are aimed to improve our understanding of metal behaviour in such systems, benefit from high-resolution, interactive sampling campaigns. The present paper discusses a high-resolution approach to coastal monitoring, with the application of an automated voltammetric metal analyser for on-line measurements of dissolved trace metals in the Gulf of Cadiz, south-west Spain. This coastal sea receives metal-rich inputs from a metalliferous mining area, mainly via the Huelva estuary. On-line measurements of dissolved Cu, Zn, Ni and Co were carried out on-board ship during an eight-day sampling campaign in the study area in June 1997. A pumping system operated continuously underway and provided sampled water from a depth of ca. 4 m. Total dissolved metal concentrations measured on-line in the Gulf of Cadiz ranged between <5 nM Cu (<3 nM Ni) ca. 50 km off-shore and 60–90 nM Cu (5–13 nM Ni) in the vicinity of the Huelva estuary. The survey revealed steep gradients and strong tidal variability in the dissolved metal plume extending from the Huelva estuary into the Gulf of Cadiz. Further on-line measurements were carried out with the automatic metal monitor from the bank of the Odiel estuary over a full tidal cycle, at dissolved metal concentrations in the μM range. The application confirmed the suitability of the automated metal monitor for coastal sampling, and demonstrated its adaptability to a wide range of environmental conditions in the dynamic waters of estuaries and coastal seas. The near-real time acquisition of dissolved metal concentrations at high resolution enabled an interactive sampling campaign and therefore the close investigation of tidal variability in the development of the Huelva estuary metal plume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文利用1978~1984年南海北部的逐月调查资料,分析珠江口冲淡水的扩展特征及其扩展变化。资料分析显示,在风及入海径流量等因素的影响下,珠江口冲淡水的扩展具有季节变化和年际变化。夏季珠江口冲淡水在河口外的扩展形态可划分出四种扩展形态,包括向海扩展型、粤东扩展型、粤西扩展型及似对称扩展型。同时根据珠江入海月平均流量与冲淡水扩展面积的相关分析可知,珠江口入海流量的大小决定了河口冲淡水在口外的扩展大小,流量的季节变化决定了冲淡水扩展大小的季节变化,而流量的年变化影响着冲淡水扩展的年变化。根据海域风场与冲淡水扩展形态的对比分析表明,风的季节变化和日变化影响着冲淡水扩展方向的变化,风场影响控制了珠江口冲淡水不同的扩展形态。夏季在E~SE向风的作用下,珠江口冲淡水扩展表现为粤西扩展型;而珠江口冲淡水扩展为粤东扩展型时,南海北部的月平均风场为SSW~SW向风。冲淡水扩展倾向于向海扩展型时,海域吹S风为主,且风速较小。 在资料分析的基础上,本文利用ECOM模式对冲淡水扩展的动力机制进行进一步探讨。模式试验结果表明,理想情况下,珠江河口冲淡水向外海突出,冲淡水扩展形态为向海扩展型;珠江入海流量的大小决定冲淡水扩展范围的大小,入海流量大,冲淡水扩展的范围大。不同方向的盛行风是珠江河口冲淡水扩展形态和动力的决定因子。在东北风、东风和东南风的作用下,河口冲淡水形态为粤西扩展型,风持续时间长,冲淡水扩展形态表现为极端粤西扩展型。在西南季风的影响下,河口冲淡水的扩展方向明显相反,冲淡水扩展形态表现为典型的粤东向离岸扩展型。S、SSE风约束了河口冲淡水向口外的扩展,冲淡水扩展形态表现为轻微的粤东向扩展。在偏E风与偏S风交替作用下,表层冲淡水在一定时刻会出现似对称形态。 在对南海北部潮汐潮流研究的基础上,本文进一步模拟了潮汐潮流对珠江口冲淡水扩展的影响。模型试验结果显示,珠江口周期性的潮流运动所造成的低盐水的净水平输运很小,其主要作用更多体现在对冲淡水与周围高盐水体的混合上,在很大程度上限制了低盐水向海或向两侧方向的扩展。 在模型试验的基础上,本文进一步模拟了在多种动力因子作用下夏季珠江口冲淡水的扩展演化规律。模式计算表明,珠江口冲淡水扩展形态的演变受多种因素影响,而风是其中影响冲淡水扩展演化最重要的因子。 将考虑斜压效应和不考虑斜压效应的模式计算结果进行比较,结果显示珠江口冲淡水扩展对粤东、粤西沿岸流的形成和发育影响明显。夏季珠江口冲淡水的扩展可促进粤东沿岸流的进一步发育,粤东沿岸流强化。而影响粤西沿岸流的主要因子是风应力和珠江口冲淡水的西向扩展,无风或弱风时,粤西西向流主要是由于冲淡水与周围水体的压力差所产生的密度流经过地转调整作用形成的;否则是SE~NE风与珠江口冲淡水的西向扩展同时影响粤西沿岸流的西向流动。