988 resultados para phospholipase-D activity
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14% recovery. The native molecular mass of the glycoprotein (12% of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55 degrees C and 4.5. The enzyme was stable for more than 1 hr at 50 degrees C and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80% of activity after storage at 4 degrees C by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn(2+), Mg(2+) and Co(2+), and inhibited by Cu(2+), Hg(2+) and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. K(d) and V(max) values were 18 mM and 189 U/mg protein using sucrose as substrate.
Resumo:
The secreted phospholipases A(2) (sPLA(2)s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A(2) (hsPLA(2)-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA(2)-IID in Escherichia coli, the DNA-coding sequence for hsPLA(2)-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA(2)-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A(2). The refolded recombinant hsPLA(2)-IID demonstrated Ca(2+)-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA(2)-IID which will advance our understanding of the structure-function relationship and biological effects of the protein. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Suramin is a polysulphonated napthylurea used as an antiprotozoal/anthelminitic drug, which also inhibits a broad range of enzymes. Suramin binding to recombinant human secreted group IIA phospholipase A(2) (hsPLA(2)GIIA) was investigated by molecular dynamics simulations (MD) and isothermal titration calorimetry (ITC). MD indicated two possible bound suramin conformations mediated by hydrophobic and electrostatic interactions with amino-acids in three regions of the protein. namely the active-site and residues located in the N- and C-termini, respectively. All three binding sites are located on the phospholipid membrane recognition surface, suggesting that suramin may inhibit the enzyme, and indeed a 90% reduction in hydrolytic activity was observed in the presence of 100 nM suramin. These results correlated with ITC data, which demonstrated 2.7 suramin binding sites on the hsPLA(2)GIIA, and indicates that suramin represents a novel class of phosphohpase A(2) inhibitor. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the isolation of two putative D2R promoters from grey mullet, one 5' flanking and the other an intronic sequence immediately upstream of the first coding exon. Promoter activity of the intronic sequence was confirmed in vitro through functional analysis using luciferase as reporter gene. The functional characteristics of the region flanking the 5'-UTR is currently under investigation.
Resumo:
Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific beta subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both the in vitro and in vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles, in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greater in vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both alpha 2,3 and alpha 2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greater in vitro biological potency compared to those of the pituitary human follicle stimulating hormone.
Resumo:
A conformationally biased decapeptide agonist of human C5a (C5a(65-74)Y65,F67,P69,P71,D-Ala73 or YSFKPMPLaR) was used as a functional probe of the C5a receptor (C5aR) in order to understand the conformational features in the C-terminal effector region of C5a that are important for C5aR binding and signal transduction. YSFKPMPLaR was a potent, full agonist of C5a, but at higher concentrations had a superefficacious effect compared to the natural factor. The maximal efficacy of this analogue was 216 +/- 56% that of C5a in stimulating the release of beta-glucuronidase from human neutrophils. C5aR activation and binding curves both occurred in the same concentration range with YSFKPMPLaR, characteristics not observed with natural C5a or more conformationally flexible C-terminal agonists. YSFKPMPLaR was then used as a C-terminal effector template onto which was synthesized various C5aR binding determinants from the N-terminal core domain of the natural factor. In general, the presence of N-terminal binding determinants had little effect on either potency or binding affinity when the C-terminal effector region was presented to the C5aR in this biologically active conformation. However, one peptide, C5a(12-20)-Ahx-YSFKPMPLaR, expressed a 100-fold increase in affinity for the neutrophil C5aR and a 6-fold increase in potency relative to YSFKPMPLaR. These analyses showed that the peptides used in this study have up to 25% of the potency of C5a in human fetal artery and up to 5% of the activity of C5a in the PMN enzyme release assay.
Resumo:
Fructan:fructan fructosyltransferase (FFT) activity was purified about 300-fold from leaves of Lolium rigidura Gaudin by a combination of affinity chromatography, gel filtration, anion exchange and isoelectric focusing. The FFT activity was free of sucrose:sucrose fructosyltransferase and invertase activities. It had an apparent pI of 4.7 as determined by isoelectric focusing, and a molecular mass of about 50000 (gel filtration). The FFT activity utilized the trisaccharides 1-kestose and 6(G)-kestose as sole substrates, but was not able to use 6-kestose as sole substrate. The FFT activity was not saturated when assayed at concentrations of 1-kestose, 6(G)-kestose or (1,1)-kestotetraose of up to 400 mM The rate of reaction of the FFT activity was most rapid when assayed with 1-kestose and was less rapid when assayed with 6(G)-kestose, (1,1)-kestotetraose or (1,1,1)-kestopentaose. The FFT activity when assayed at a relatively high concentration of enzyme activity (approximately equivalent to about half the activity in crude extracts per gram fresh mass) did not synthesize fructan of degree of polymerization > 6, even during extended assays of up to 10 h. When assayed with a combination of 1-kestose and uniformly labelled [C-14]sucrose as substrates, the major reaction was the transfer of a fructosyl residue from 1-kestose to sucrose resulting in the re-synthesis of 1-kestose. Tetrasaccharide and 6(G)-kestose were also synthesized. When assayed with 6(G)-kestose and [C-14]sucrose as substrates, the major reaction of the FFT activity was the synthesis of tetrasaccharide. However, some synthesis of 1-kestose and re-synthesis of 6(G)-kestose also occurred. When 6, kestose was the sole substrate for the FFT activity, synthesis of tetrasaccharide was 2.7 to 3.4-fold slower than when 1-kestose was used as the sole substrate. Owing to differences in the fructan:sucrose fructosyltransferase activity of the FFT with each of the trisaccharides, net synthesis of tetrasaccharide by the FFT was altered significantly in the presence of sucrose. The magnitude of this effect depended on the concentration of the trisaccharides. In the presence of sucrose, 6(G)-kestose could be a substrate of equivalent importance to 1-kestose for synthesis of tetrasaccharide.
Resumo:
The products formed by a fructan:fructan fructosyltransferase (FFT) activity purified from Lolium rigidum Gaudin were identified after gas chromatography-mass spectrometry of partially methylated alditol acetates, electrospray ionization-mass spectrometry and reversed-phase high-performance liquid chromatography. The FFT activity synthesized oligofructans up to degree of polymerization (DP) 6, but did not synthesize fructans of DP > 6 even when assayed with (1,1,1)-kestopentaose for up to 10 h. The FFT activity when assayed with 1-kestose or 6(G)-kestose synthesized fructan with fructosyl residues almost exclusively linked by beta-2,1-glycosidic linkages. When assayed with 1-kestose, the FFT activity synthesized tetrasaccharides and pentasaccharides with an internal glucosyl residue. The predominant tetrasaccharide was (1&6(G))-kestotetraose and the predominant pentasaccharide was (1&6(G),1)-kestopentaose. By comparison, tetrasaccharides and pentasaccharides extracted from L. rigidum also contained predominantly beta-2,1-glycosidic linked fructans with an internal glucosyl residue. The only exception was that one of the pentasaccharides contained beta-2,1- and beta-2,6-glycosidic linked fructosyl residues. This pentasaccharide was not synthesized by the FFT activity. The role of this FFT activity in formation of oligofructans in L. rigidum is discussed.
Resumo:
Juvenile onset systemic sclerosis (JoSSc) is a rare disease, and there are no studies focusing in bone mineral density and biochemical bone parameters. Ten consecutive patients with JoSSc and 10 controls gender, age, menarche age, and physical activity matched were selected. Clinical data were obtained at the medical visit and chart review. Laboratorial analysis included autoantibodies, 25-hydroxyvitamin D (25OHD), intact parathyroid hormone, calcium, phosphorus, alkaline phosphatase and albumin sera levels. Bone mineral density was analyzed by dual-energy X-ray absorptiometry, and bone mineral apparent density (BMAD) was calculated. A lower BMAD in femoral neck (0.294 +/- A 0.060 vs. 0.395 +/- A 0.048 g/cm(3), P = 0.001) and total femur (0.134 +/- A 0.021 vs. 0.171 +/- A 0.022 g/cm(3), P = 0.002) was observed in JoSSc compared to controls. Likewise, a trend to lower BMAD in lumbar spine (0.117 +/- A 0.013 vs. 0.119 +/- A 0.012 g/cm(3), P = 0.06) was also found in these patients. Serum levels of 25OHD were significantly lower in JoSSc compared to controls (18.1 +/- A 6.4 vs. 25.1 +/- A 6.6 ng/mL, P = 0.04), and all patients had vitamin D insufficiency (< 20 ng/mL) compared to 40% of controls (P = 0.01). All other biochemical parameters were within normal range and alike in both groups. BMAD in femoral neck and total femur was correlated with 25OHD levels in JoSSc (r = 0.82, P = 0.004; r = 0.707, P = 0.02; respectively). We have identified a remarkable high prevalence of 25OHD insufficiency in JoSSc. Its correlation with hip BMAD suggests a causal effect and reinforces the need to incorporate this hormone evaluation in this disease management.
Resumo:
Previous functional magnetic resonance imaging (fMRI) studies examined neural activity responses to emotive stimuli in healthy individuals after acute/subacute administration of antidepressants. We now report the effects of repeated use of the antidepressant clomipramine on fMRI data acquired during presentation of emotion-provoking and neutral stimuli on healthy volunteers. A total of 12 volunteers were evaluated with fMRI after receiving low doses of clomipramine for 4 weeks and again after 4 weeks of washout. Fear-, happiness-, anger-provoking and neutral pictures from the International Affective Picture System (IAPS) were used. Data analysis was performed with statistical parametric mapping (P < 0.05). Paired t-test comparisons for each condition between medicated and unmedicated states showed, to negative valence paradigms, decrease in brain activity in the amygdala when participants were medicated. We also demonstrated, across both positive and negative valence paradigms, consistent decreases in brain activity in the medicated state in the anterior cingulate gyrus and insula. This is the first report of modulatory effects of repeated antidepressant use on the central representation of somatic states in response to emotions of both negative and positive valences in healthy individuals. Also, our results corroborate findings of antidepressant-induced temporolimbic activity changes to emotion-provoking stimuli obtained in studies of subjects treated acutely with such agents.
Resumo:
Mobile Lipids detected using H-1-NMR in stimulated lymphocytes were correlated with cell cycle phase, expression of the interleukin-2 receptor alpha and proliferation to assess the activation status of the lymphocytes. Mobile lipid levels, IL-2R alpha expression and proliferation increased after treatment with PMA and ionomycin. PMA or ionomycin stimulation alone induced increased IL-2R alpha expressiom but not proliferation, PMA- but not ionomycin-stimulation generated mobile lipid, Treatment with anti-CD3 antibody did not increase IL-2R alpha expression or proliferation but did generate increased amounts of mobile lipid, The cell cycle status of thymocytes treated with anti-CD3, PMA or ionomycin alone indicated an. accumulation of the cells in the G(1) phase of the cell cycle, The generation of mobile lipid was abrogated in anti-CD3 antibody-stimulated thymic lymphocytes but not in splenic lymphocytes, using a phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor which blocked cells in the G(1)/S phase of the cell cycle, This suggests that the H-1-NMR-detectable mobile Lipid may be generated in anti-CD3 antibody-stimulated thymic lymphocytes by the action of PC-PLC activity via the catabolism of PC, in the absence of classical signs of activation. (C) 1997 Academic Press.
Resumo:
Arginase activity has been related to leishmaniasis development, thus we studied the constitutive and insulin-like growth factor (IGF) I-induced arginase activity of Leishmania (Viannia) braziliensis isolates from patients with different clinical forms of American tegumentary leishmaniasis (ATL). Isolates from mucosal leishmaniasis presented higher basal levels of arginase activity than isolates from other clinical forms of ATL. Isolates from disseminated leishmaniasis that present mucosal lesion in some cases reached the arginase activity similar to that of isolates from mucosal leishmaniasis upon IGF-I stimulation. Differences in arginase activity may influence disease outcomes such as evolution to mucosal lesion in patients with L (V.) braziliensis infection. (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.