983 resultados para phase-field
Resumo:
In this paper, we present comprehensive ground-based and space-based in situ geosynchronous observations of a substorm expansion phase onset on 1 October 2005. The Double Star TC-2 and GOES-12 spacecraft were both located within the substorm current wedge during the substorm expansion phase onset, which occurred over the Canadian sector. We find that an onset of ULF waves in space was observed after onset on the ground by extending the AWESOME timing algorithm into space. Furthermore, a population of low-energy field-aligned electrons was detected by the TC-2 PEACE instrument contemporaneous with the ULF waves in space. These electrons appear to be associated with an enhancement of field-aligned Poynting flux into the ionosphere which is large enough to power visible auroral displays. The observations are most consistent with a near-Earth initiation of substorm expansion phase onset, such as the Near-Geosynchronous Onset (NGO) substorm scenario. A lack of data from further downtail, however, means other mechanisms cannot be ruled out.
Resumo:
This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
Resumo:
Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
In this paper, we show that periodic auroral arc structures are seen at the location of one particular auroral substorm onset for the 15 min preceding onset, suggesting that field line resonances should be considered a strong candidate for triggering substorm onset. Irrespective of whether this field line resonance is coincidentally or causally linked to this substorm onset, the characteristics of the field line resonance can be used to remote sense the characteristics of the geomagnetic field line that supports substorm onset. In this instance, the eigenfrequency of this resonance is around 12 mHz. Interestingly, however, there is no evidence of this field line resonance in a seven satellite major Time History of Events and Macroscale Interactions during Substorms (THEMIS)-GOES conjunction, ranging from geosynchronous orbit to ~30 RE. However, using space-based cross-phase measurements of the local field line eigenfrequency at the inner THEMIS locations, we find that the local field line eigenfrequency is 6–10 mHz. Hence, we can reliably say that this 12 mHz Field Line Resonance (FLR) must lie inside of THEMIS locations. Our conclusion is that a high-m field line resonance can both represent a strong candidate for a trigger for substorm onset, as first proposed by Samson et al. (1992), and that its characteristics can provide invaluable information as to where substorm onset occurs in the magnetosphere.
Resumo:
The Polar spacecraft had a prolonged encounter with the high-latitude dayside magnetopause on May 29, 1996. This encounter with the magnetopause occurred when the interplanetary magnetic field was directed northward. From the three-dimensional electron and ion distribution functions measured by the Hydra instrument, it has been possible to identify nearly all of the distinct boundary layer regions associated with high-latitude reconnection. The regions that have been identified are (1) the cusp; (2) the magnetopause current layer; (3) magnetosheath field lines that have interconnected in only the Northern Hemisphere; (4) magnetosheath field lines that have interconnected in only the Southern Hemisphere; (5) magnetosheath field lines that have interconnected in both the Northern and Southern Hemispheres; (6) magnetosheath that is disconnected from the terrestrial magnetic field; and (7) high-latitude plasma sheet field lines that are participating in magnetosheath reconnection. Reconnection over this time period was occurring at high latitudes over a broad local-time extent, interconnecting the magnetosheath and lobe and/or plasma sheet field lines in both the Northern and Southern Hemispheres. Newly closed boundary layer field lines were observed as reconnection occur-red first at high latitudes in one hemisphere and then later in the other. These observations establish the location of magnetopause reconnection during these northward interplanetary magnetic field conditions as being at high latitudes, poleward of the cusp, and further reinforce the general interpretation of electron and ion phase space density signatures as indicators of magnetic reconnection and boundary layer formation.
Resumo:
A method for quantifying diffusive flows of O+ ions in the topside ionosphere from satellite soundings is described. A departure from diffusive equilibrium alters the shape of the plasma scale-height profile near the F2-peak where ion-neutral frictional drag is large. The effect enables the evaluation of , the field-aligned flux of O+ ions relative to the neutral oxygen atom gas, using MSIS model values for the neutral thermospheric densities and temperature. Upward flow values are accurate to within about 10%, the largest sources of error being the MSIS prediction for the concentration of oxygen atoms and the plasma temperature gradient deduced from the sounding. Downward flux values are only determined to within 20%. From 60,000 topside soundings, taken at the minimum and rising phase of the solar cycle, a total of 1098 mean scale-height profiles are identified for which no storm sudden commencement had occurred in the previous 12 days and for which Kp was less than 2o, each mean profile being an average of about six soundings. A statistical study ofdeduced from these profiles shows the diurnal cycle of O+ flow in the quiet, topside ionosphere at mid-latitudes and its seasonal variations. The differences betweenand ion flux observations from incoherent scatter radars are considered using the meridional thermospheric winds predicted by a global, three-dimensional model. The mean interhemispheric flow from summer to winter is compared with predictions by a numerical model of the protonospheric coupling of conjugate ionospheres for up to 6 days following a geomagnetic storm. The observed mean (of order 3 × 1016 ions day−1 along a flux tube of area 1 m2 at 1000 km) is larger than predicted for day 6 and the suggested explanation is a decrease in upward flows from the winter, daytime ionosphere between the sixth and twelfth days.
Resumo:
Sampling owls in a reliable and standardized way is not easy given their nocturnal habits. Playback is a widely employed technique to survey owls. We assessed the influence of wind speed, temperature, air humidity, and moon phase on the response rate of the Tropical Screech Owl Megascops choliba and the Burrowing Owl Athene cunicularia in southeast Brazil. Tropical Screech Owl occurs in scrubland and wooded habitats, whereas the Burrowing Owl inhabits open grasslands to grassland savannah. Sixteen survey points were systematically distributed in four different landscape types, ranging from open grassland to woodland savannah. Field work was conducted in 2004 from June to December, the reproductive season of the two owl species. Our study design consisted of eight field expeditions of five nights each; four expeditions occurred under full moon and four under new moon conditions. At each survey station, we performed a broadcast/listening sequence involving several calls and vocalizations from each species, starting with Tropical Screech Owl (the smaller species). From 112 sample periods for each species within their respective preferred habitats, we obtained 54 responses from Tropical Screech Owl (48% response rate) and 30 responses (27% response rate) from Burrowing Owl. We found that the response rate of Tropical Screech Owl increased under conditions of higher temperature and air humidity, while the response rate of Burrowing Owl was higher during full moon nights.
Resumo:
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.
Resumo:
Measurements of the magnetic susceptibility of the frustrated pyrochlore magnet Gd(2)Sn(2)O(7) have been performed at temperatures below T = 5 K and in magnetic fields up to H = 12 T. The phase boundaries determined from these measurements are mapped out in an H-T phase diagram. In this gadolinium compound, where the crystal-field splitting is small and the exchange and dipolar energy are comparable, the Zeeman energy overcomes these competing energies, resulting in at least four magnetic phase transitions below 1 K. These data are compared against those for Gd(2)Ti(2)O(7) and will, we hope, stimulate further studies.
Resumo:
The physical properties of the La(0.6)Y(0.1)Ca(0.3)MnO(3) compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol-gel method revealed that specimens are single phase and have average grain size of similar to 0.5 mu m. Magnetization and 4-probe dc electrical resistivity rho(T,H) experiments showed that a ferromagnetic transition at T(C) similar to 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T(MI). The magnetoresistance effect was found to be more pronounced at low applied fields (H <= 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T (C) and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity epsilon`(T,H) is consistent with changes in the concentration of e(g) mobile holes, a feature much more pronounced close to T (C).
Resumo:
We have investigated the magnetic-field asymmetry of the conductance in the nonlinear regime in a small Aharonov-Bohm ring. We have found that the odd-in B and linear in V (the DC bias) correlation function of the differential conductance exhibits periodical oscillations with the Aharonov-Bohm flux. We have deduced the electron interaction constant and analyzed the phase rigidity of the Aharonov-Bohm oscillations in the nonlinear regime. Copyright (C) EPLA, 2009
Resumo:
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov-Casher and He-McKellar-Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.
Resumo:
Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.