970 resultados para pathogen-derived resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the salicylic acid (SA) glycosides SA 2-O-β-D-glucose (SAG), SA glucose ester (SGE) and the glycosyl transferases UGT74F1 and UGT74F2 in the establishment of basal resistance of Arabidopsis against Pseudomonas syringae pv tomato DC3000 (Pst) was investigated. Both mutants altered in the corresponding glycosyl transferases (ugt74f1 and ugt74f2) were affected in their basal resistance against Pst. The mutant ugt74f1 showed enhanced susceptibility, while ugt74f2 showed enhanced resistance against the same pathogen. Both mutants have to some extent, altered levels of SAG and SGE compared to wild type plants, however, in response to the infection, ugt74f2 accumulated higher levels of free SA until 24 hpi compared to wild type plants while ugt74f1 accumulated lower SA levels. These SA levels correlated well with reduced expression in PR1 and EDS1 in ugt74f1. In contrast, ugt74f2 has enhanced expression of Enhanced Disease Susceptibility 1 (EDS1) but a strong reduction in the expression of several jasmonate (JA)-dependent genes. Bacterial infection interfered with the expression of Fatty Acid Desaturase (FAD), Lipoxygenase2 (LOX2), carboxyl methyltransferase1 (BSMT1) and 9-cis-epoxycarotenoid dioxygenase (NCED3) genes in ugt74f1, thus promoting an antagonistic effect with SA-signalling and leading to enhanced bacterial growth. UGT74F2 might be a target for bacterial effectors since bacterial mutants affected in effector synthesis were impaired in inducing UGT74F2 expression. These results suggest that UGT74F2 negatively influences the accumulation of free SA, hence leading to an increased susceptibility due to reduced SA levels and increased expression of the JA and ABA markers LOX-2, FAD and NCED-3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants activate local and systemic defence mechanisms upon exposure to stress. This innate immune response is partially regulated by plant hormones, and involves the accumulation of defensive metabolites. Although local defence reactions to herbivores are well studied, less is known about the impact of root herbivory on shoot defence. Here, we examined the effects of belowground infestation by the western corn rootworm Diabrotica virgifera virgifera on aboveground resistance in maize. Belowground herbivory by D. v. virgifera induced aboveground resistance against the generalist herbivore Spodoptera littoralis, and the necrotrophic pathogen Setosphaeria turcica. Furthermore, D. v. virgifera increased shoot levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and primed the induction of chlorogenic acid upon subsequent infestation by S. littoralis. To gain insight into the signalling network behind this below- and aboveground defence interaction, we compiled a set of 32 defence-related genes, which can be used as transcriptional marker systems to detect activities of different hormone-response pathways. Belowground attack by D. v. virgifera triggered an ABA-inducible transcription pattern in the shoot. The quantification of defence hormones showed a local increase in the production of oxylipins after root and shoot infestation by D. v. virgifera and S. littoralis, respectively. On the other hand, ABA accumulated locally and systemically upon belowground attack by D. v. virgifera. Furthermore, D. v. virgifera reduced the aboveground water content, whereas the removal of similar quantities of root biomass had no effect. Our study shows that root herbivory by D. v. virgifera specifically alters the aboveground defence status of a maize, and suggests that ABA plays a role in the signalling network mediating this interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite--specific antigens, and/or the presence of 'dying out' or 'aborted' metacestodes, not including hereby those individuals who putatively got infected but did not seroconvert and who subsequently allowed no development of the pathogen. For those individuals where infection leads to disease, the developing parasite is partially controlled by host immunity. In infected humans, the type of immune response developed by the host accounts for the subsequent trichotomy concerning the parasite development: (i) seroconversion proving infection, but lack of any hepatic lesion indicating the failure of the parasite to establish and further develop within the liver; or resistance as shown by the presence of fully calcified lesions; (ii) controlled susceptibility as found in the "conventional" alveolar echinococcosis (AE) patients who experience clinical signs and symptoms approximately 5-15 years after infection, and (iii) uncontrolled hyperproliferation of the metacestode due to an impaired immune response (AIDS or other immunodeficiencies). Immunomodulation of host immunity toward anergy seems to be triggered by parasite metabolites. Beside immunomodulating IL-10, TGFβ-driven regulatory T cells have been shown to play a crucial role in the parasite-modulated progressive course of AE. A novel CD4+CD25+ Treg effector molecule FGL2 recently yielded new insight into the tolerance process in Echinococcus multilocularis infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer (PCa) is one of the leading malignancies affecting men in the Western world. Although tremendous effort has been made towards understanding PCa development and developing clinical treatments in the past decades, the exact mechanisms of PCa are still not clearly understood. Emerging evidence has postulated that a population of stem cell-like cells inside a tumor, termed ‘cancer stem cells (CSCs)’, may be the cells responsible for tumor initiation, progression, recurrence, metastasis and therapy resistance. Like CSC studies in other cancer types, it has been reported that PCa also contains CSCs. However, there remain several unresolved questions that need to be clarified. First, the relationship between prostate CSCs (PCSCs) and therapy resistance (chemo- and radio-) is not known. Herein, we have found that not all CSCs are drug-tolerant, and not all drug-tolerant cells are CSCs. Second, whether primary human PCa (HPCa) actually contain PCSCs remains unclear, due to the well-known fact that we have yet to establish a reliable assay system that can reproducibly and faithfully reconstitute tumor regeneration from single HPCa cells. Herein, after utilizing more than 114 HPCa samples we have provided evidence that immortalized bone marrow-derived stromal cells (Hs5) can help dissociated HPCa cells generate undifferentiated tumors in immunodeficient NOD/SCID-IL2Rγ-/- mice, and the undifferentiated PCa cells seem to have a survival advantage to generate tumors. Third, the evolution of PCa from androgen dependent to the lethally castration resistant (CRPC) stage remains enigmatic, and the cells responsible for CRPC development have not been identified. Herein, we have found a putative cell population, ALDH+CD44+α2β1+ PCa cells that may represent a cell-of-origin for CRPC. Taken together, our work has improved our understanding of PCSC properties, possibly highlighting a potential therapeutic target for CRPC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La resistencia de las plantas a los hongos necrótrofos como Plectosphaerella cucumerina es genéticamente compleja y depende de la activación coordinada de distintas rutas de señalización (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Entre éstas se encuentran las mediadas por la proteína G heterotrimérica, un complejo formado por tres subunidades (Gα, Gβ y Gγ) que regula tanto la respuesta de inmunidad a diferentes patógenos como distintos procesos de desarrollo (Temple and Jones, 2007). En esta Tesis hemos demostrado que, en Arabidopsis, el monómero funcional formado por las subunidades Gβ y Gγ1/Gγ2 es el responsable de la regulación de la respuesta de defensa, ya que mutantes nulos en estas subunidades (agb1 y agg1 agg2) presentan una alta susceptibilidad al hongo P. cucumerina. Además, hemos identificado varios aminoácidos (Q102, T188 y R235) de la proteína AGB1 esenciales en la interacción con los efectores correspondientes para la regulación de la respuesta inmune (Jiang et al, enviado). Para determinar las bases moleculares de la resistencia mediada por la proteína G heterotrimérica, llevamos a cabo un análisis transcriptómico comparativo entre los genotipos agb1 y Col-0, el cual reveló que la resistencia mediada por AGB1 no depende de rutas defensivas implicadas en la resistencia a hongos necrotrofos, como las mediadas por el ácido salicílico (SA), etileno (ET), jasmónico (JA) o ácido abscísico (ABA), o la ruta de biosíntesis de metabolitos derivados del triptófano. Este estudio mostró que un número significativo de los genes desregulados en respuesta a P. cucumerina en el genotipo agb1 respecto a las plantas silvestres codificaban proteínas con funciones relacionadas con la pared celular. La evaluación de la composición y estructura de la pared de los mutantes de las subunidades de la proteína G heterotrimérica reveló que los genotipos agb1 y agg1 agg2 presentaban alteraciones similares diferentes de las observadas en plantas silvestres Col-0, como una reducción significativa en el contenido de xilosa en la pared. Estos datos sugieren que la proteína G heterotrimérica puede modular la composición/estructura de la pared celular y contribuir, de esta manera, en la regulación de la respuesta inmune (Delgado- Cerezo et al, 2011). La caracterización del interactoma de la proteína G heterotrimérica corroboró la relevancia funcional que presenta en la regulación de la pared celular, ya que un número significativo de las interacciones identificadas estaban comprendidas por proteínas relacionadas directa o indirectamente con la biogénesis y remodelación de la pared celular (Klopffleisch et al, 2011). El papel en inmunidad de algunos de estos potenciales efectores ha sido validado mediante el análisis de la resistencia a P. cucumerina de los mutantes de pérdida de función correspondientes. Con el objetivo de caracterizar las rutas de señalización mediadas por AGB1 e identificar efectores implicados en esta señalización, llevamos a cabo una búsqueda de mutantes supresores de la susceptibilidad de agb1 a P. cucumerina, identificándose varios mutantes sgb (supressor of Gbeta). En esta Tesis hemos caracterizado en detalle el mutante sgb10, que presenta una activación constitutiva de las rutas de señalización mediadas por SA y JA+ET y suprime el fenotipo de susceptibilidad de agb1. SGB10 y AGB1 forman parte de rutas independientes en la regulación de la respuesta inmune, mientras que interaccionan de forma compleja en el control de determinados procesos de desarrollo. La mutación sgb10 ha sido cartografiada entre los genes At3g55010 y At3g56408, que incluye una región con 160 genes. ABSTRACT Plant resistance to necrotrophic fungi Plectosphaerella cucumerina is genetically complex and depends on the interplay of different signalling pathways (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Among others, the heterotrimeric G protein complex has a relevant role. The G protein that is formed by three subunits (Gα, Gβ and Gγ) is a pleiotropic regulator of immune responses to different types of pathogens and developmental issues (Temple and Jones, 2007). Throughout the Thesis, we have demonstrated that Arabidopsis’ functional monomer formed by the Gβ and Gγ1/Gγ2 subunits is a key regulator of defense response, as null mutants (agb1 and agg1 agg2) are equally hypersusceptible to P. cucumerina infection. In addition we have identified several AGB1 aminoacids (Q102, T188 y R235) essentials to interact with specific effectors during the regulation of immune response (Jiang et al, sent).To determine the molecular basis of heterotrimeric G protein mediated resistance we have performed a microarray analysis with agb1-1 and wild type Col-0 plants before and after P. cucumerina challenge. A deep and exhaustive comparative transcriptomical analysis of these plants revealed that AGB1 mediated resistance does not rely on salicilic acid (SA), ethylene (ET), jasmonates (JA), abscisic acid (ABA) or triptophan derived metabolites biosynthesis. However the analysis revealed that a significant number of cell wall related genes are misregulated in the agb1 mutant after pathogen challenge when compared to wild-type plants. The analysis of cell wall composition and structure showed similar cell wall alterations between agb1 and agg1 agg2 mutants that are different from those of wild-type plants, so far the mutants present a significant reduction in xylose levels. All these results suggest that heterotrimeric G protein may regulate immune response through modifications in the cell wall composition/structure (Delgado-Cerezo et al, 2011). The characterization of Heterotrimeric G protein interactome revealed highly connected interactions between the G-protein core and proteins involved in cell wall composition or structure (Klopffleisch et al, 2011). To test the role in immunity of several effectors identified above, we have performed resistance analysis of corresponding null mutants against P. cucumerina. In order to characterize AGB1 mediated signalling pathway and identify additional effectors involved in AGB1-mediated immune response against P. cucumerina, we have performed a screening to isolate mutants with suppression of agb1 phenotype. One of the mutants, named sgb10, has been characterized during the Thesis. The mutant shows constitutive expression of SA, JA+ET-mediated defense signaling pathways to suppres agb1 hypersusceptibility. SGB10 and AGB1 proteins seem to be part of independent pathways in immunity, however its function during development remains unclear. At present, we have mapped the sgb10 mutation between At3g55010 and At3g56408 genes. This region contains 160 genes.