981 resultados para oxidation of 1-butene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of nicotinamide adenine dinucleotide (NADH) in its reduced form was examined in two room-temperature ionic liquids (RTILs): 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophos-phate ([C(4)mim][PF6]). NADH oxidation has previously been studied in aqueous solution where it follows the pathway: one-electron oxidation to the NADH(center dot+) radical cation, deprotonation to produce the neutral NAD(center dot) radical, then oxidation to the NAD(+) cation. The electrochemistry of NADH was examined in [C(2)mim][NTf2] and [C(4)mim][PF6] at the bare Pt electrode (10 mu m diameter): In [C(2)mim][NTf2], no oxidation was observed; in [C(4)mim][PF6], an oxidative signal was observed, which likely followed the pathway described above, where upon formation of the NADH(center dot+) radical cation, the [PF6](-) anion (unlike the [NTf2](-) anion) reacts with the proton to form HPF6, which decomposes. This demonstrates the tunability of RTILs, whereby the choice of one anion in an RTIL over another can promote a reaction. Poly(vinylferrocene) (PVF) was studied as a mediator for the NADH detection in both RTILs to attempt to lower the potential of NADH detection. The Pt electrode was modified with PVF, and the oxidation of PVF to PVF+ was observed in [C(2)mim][NTf2] and [C(4)mim][PF6], but no mediation of the NADH oxidation was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver colloids have been prepared by reducing AgNO3 in aqueous solution and embeded in alumina following a sol-gel procedure in the presence of Pluronic 84 ((EO)(19)(PO)(39)(EO)(19)), as surfactant. Plasma-catalytic experiments aimed at the mineralization of toluene showed that the selectivity to CO2 was significantly increased in the presence of Ag catalysts compared with results obtained using the plasma alone. In-situ studies of the ozone interaction with catalysts provide an insight into the nature of the active sites of supported silver colloids for mineralization reactions. It is noticeable that when ozone is chemisorbed on embedded Ag colloidal catalysts no change in the silver oxidation state or size is found. The population of the chemisorbed species is higher at lower temperatures, where the non-selective decomposition of ozone is smaller. The catalysts exhibit high stability, preserving the structural and textural properties after the catalytic tests, that is indeed very important in the presence of ozone. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photomineralisation of soot by P25 titania films is studied using FT-IR and the process shown to involve the oxidation of carbon to CO2 exclusively. The efficiency of this process is low, however, with a formal quantum efficiency of 1.1 X 10(-4) molecules of carbon oxidized per incident photon of UVA light. The cause of this low efficiency is attributed largely to the less than intimate contact between the fibrous soot layer and the surface of the photocatalyst. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of different electron acceptors are tested for efficacy in the oxidation of water to oxygen, photocatalysed by titanium dioxide. The highly UV-absorbing metal ion electron acceptors, Ce4+ and Fe3+, appear ineffective at high concentration (10(-2) M), due to UV-screening, but more effective at lower concentrations (10(-3) M). The metal-depositing electron acceptor, Ag+, is initially effective, but loses activity upon prolonged irradiation due to metal deposition which promotes electron-hole recombination as well as UV-screening the titania particles. Most striking of the electron acceptors tested is persulfate, particularly in alkaline solution (0.1 M NaOH). The kinetics of the photo-oxidation of water by persulfate, photocatalysed by titania are studied as a function of pH, [S2O82-] and incident light intensity (I). The initial rate of water oxidation increases with pH, is directly proportional to the concentration of persulfate present and depends upon I-0.6. The TiO2/alkaline persulfate photosystem is robust and shows very little evidence of photochemical wear upon repeated irradiation. The results of this work are discussed with regard to previous work in this area and current mechanistic thinking. The formal quantum efficiency of the TiO2/alkaline persulfate photosystem was estimated as ca. 2%. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yield of substituted benzaldehydes and benzoic acids formed by the aerial oxidation of a range of substituted toluenes photocatalysed by titanium dioxide in acetonitrile is dramatically improved by the addition of small amounts of sulfuric acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-60 is more effective than graphite or diamond as a redox catalyst for the oxidation of chloride to chlorine by cerie ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of oxidation of water to oxygen by MnO4-, mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of MnO4- (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50 +/- 1 kJ mol-1. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to O2 and the highly irreversible reduction of MnO4- to Mn2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ FTIR spectroscopic and electrochemical data and ex situ (emersion) electron diffraction (LEED) and RHEED) and Auger spectroscopic data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single-crystal surface in perchloric acid solution. In both the absence and the presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (e.g., from -80 to +200 mV vs Ag/AgCl), a (2 × 2)-O phase, which is unreactive toward CO oxidation, is formed, in agreement with UHV studies. Increasing the potential results in the formation of (3 × 1) and (1 × 1) phases at 410 and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (CO ) and three-fold-hollow (CO ) binding CO adsorbates (bands at 2000-2040 and 1770-1800 cm , respectively) were observed on the Ru(0001) electrode. The in situ FTIR data show that the adsorbed CO species remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the CO and O domains. At low CO coverages, reversible relaxation (at lower potentials) and compression (at higher potentials) of the CO adlayer were observed and rationalized in terms of the reduction and formation of surface O adlayers. The data obtained from the Ru(0001) electrode are in marked contrast to those observed on polycrystalline Ru, where only linear CO is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however, a variety of by-products were generated. In this paper, we report a mechanistic study of the photocatalytic destruction of microcystin-LR. In particular, the toxicity by-products of the process have been studied using both brine shrimp and protein phosphatase bioassays.