981 resultados para orbital magnetization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To report adult cases of superior orbital apocrine hidrocystoma. Retrospective case series of three patients with superior orbital apocrine hidrocystoma and blepharoptosis with review of the clinical aspects of each of the cases. All three cases presented with blepharoptosis. Two of the cases had occult hidrocystoma, and one was visibly subcutaneous at presentation. Although rare and more common along the eyelid margin, apocrine hidrocystomas may occur in the orbit leading to secondary blepharoptosis and should be included within the differential diagnosis of orbital cysts. Physicians should therefore be aware of this possibility.
Resumo:
OBJECTIVE: To evaluate the ability of orbital apex crowding volume measurements calculated with multidetector-computed tomography to detect dysthyroid optic neuropathy. METHODS: Ninety-three patients with Graves' orbitopathy were studied prospectively. All of the patients underwent a complete neuro-ophthalmic examination and computed tomography scanning. Volumetric measurements were calculated from axial and coronal contiguous sections using a dedicated workstation. Orbital fat and muscle volume were estimated on the basis of their attenuation values (in Hounsfield units) using measurements from the anterior orbital rim to the optic foramen. Two indexes of orbital muscle crowding were calculated: i) the volumetric crowding index, which is the ratio between soft tissue (mainly extraocular muscles) and orbital fat volume and is based on axial scans of the entire orbit; and ii) the volumetric orbital apex crowding index, which is the ratio between the extraocular muscles and orbital fat volume and is based on coronal scans of the orbital apex. Two groups of orbits (with and without dysthyroid optic neuropathy) were compared. RESULTS: One hundred and two orbits of 61 patients with Graves' orbitopathy met the inclusion criteria and were analyzed. Forty-one orbits were diagnosed with Graves' orbitopathy, and 61 orbits did not have optic neuropathy. The two groups of orbits differed significantly with regard to both of the volumetric indexes (p<0.001). Although both indexes had good discrimination ability, the volumetric orbital apex crowding index yielded the best results with 92% sensitivity, 86% specificity, 81%/94% positive/negative predictive value and 88% accuracy at a cutoff of 4.14. CONCLUSION: This study found that the orbital volumetric crowding index was a more effective predictor of dysthyroid optic neuropathy than previously described computed tomography indexes were.
Resumo:
This article reports on the influence of the magnetization damping on dynamic hysteresis loops in single-domain particles with uniaxial anisotropy. The approach is based on the Neel-Brown theory and the hierarchy of differential recurrence relations, which follow from averaging over the realizations of the stochastic Landau-Lifshitz equation. A new method of solution is proposed, where the resulting system of differential equations is solved directly using optimized algorithms to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with particular attention given to the frequency dependence. It is shown that in the ferromagnetic resonance region, novel phenomena are observed for even moderately low values of the damping. The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced reduction of their heights. Also demonstrated is that these features remain for randomly oriented ensembles and, moreover, are approximately independent of temperature and particle size. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684629]
Resumo:
The main purposes of this manuscript are to provide an overview of various modalities of surgical correction of anterior plagiocephaly and to emphasize their differences with the classic open frontal-orbital advancement. Advancement of technology provides development of many other ways to achieve the same results. The authors describe the classic open frontal-orbital advancement and compare with other proposed techniques for correction of frontal plagiocephaly. The main limitation of the use of new forms of treatment of the anterior plagiocephaly is the age of the patient. There is still no consensus on criteria for quantitative evaluation of surgical results, and new forms of treatment do not present results with long follow-up. Frontal-orbital advancement is the preferred procedure to correct unicoronal synostosis due to its universal indication regardless of the age and degree of deformation of the anterior plagiocephaly.
Resumo:
The aim of this study was to characterize and compare the spectral behavior of different soil classes obtained by orbital and terrestrial sensors. For this, an area of 184 ha in Rafard (SP) Brazil was staked on a regular grid of 100x100 m and soil samples were collected and georeferenced. After that, soil spectral curves were obtained with IRIS sensor and the sample points were overlaid at Landsat and ASTER images for spectral data collection. The soil samples were classified and mean soil curves for all sensors were generated by soil classes. The soil classes were differentiated by texture, organic matter and total iron for all sensors studied, the orbital sensors despite the lower spectral resolution, maintained the characteristics of the soil and the curves of reflectance intensity.
Resumo:
Introduction: Orbital infections may result in permanent morbidity because of the severity of infection. Furthermore, delayed diagnosis or treatment of orbital infections can lead to intracranial complications and even death. The majority of orbital infections develop from paranasal sinus infections, cutaneous infections, and periorbital trauma. Dacryocystitis and odontogenic infection are also accounted as potential etiologies but are scarcely reported in scientific literature. Methods: The patient revealed a history of having endodontic treatment on left maxillary second molar performed 2 weeks previously. Moreover, she exhibited signs of facial pain accompanied by sinusitis symptoms, fever, and nasal obstruction the week after this endodontic procedure. The patient presented proptosis, impairment of ocular motility to the right side, facial tenderness, palpebral erythema, and referred decreased visual acuity. Intraoral exam revealed root fragments of left maxillary first molar and an extensive carious lesion on left maxillary second molar. Computed tomography enabled the observation of frontal sinus, left-sided maxillary, opacity of sphenoidal and ethmoidal sinuses, and apical lesion of left maxillary first and second molars, all suggesting the presence of their apex in the maxillary sinus. In addition, images revealed ocular proptosis and presence of high-density areas suggestive of pus in the medial orbital wall region. Results: The patient was submitted to surgical drainage under general anesthesia approximately 8 hours after the clinical evaluation. Conclusions: Early detection of orbital infection, proper diagnostic tests, and treatment may provide successful outcomes of this rarely occurring disease. (J Endod 2012;38:1541-1543)
Resumo:
Epidermal or epidermoid cysts usually are benign, solitary-growing masses located in the mid- or lower dermis. They are believed to derive from pilosebaceous units and are lined with an epidermis-like epithelium including a granular cell layer.(1) The occurrence of multiple epidermal cysts on the scalp of nonsyndromic patients is extremely rare. Although the presence of squamous cell carcinoma in the wall of an isolated epidermoid cysts is well documented in the dermatological literature,(2,3) the authors are not aware of any article in the English literature describing orbital invasion by a carcinoma developed in isolated or multiple epidermoid cysts.
Resumo:
BACKGROUND AND PURPOSE: DON, a serious complication of GO, is frequently difficult to diagnose clinically in its early stages because of confounding signs and symptoms of congestive orbitopathy. We evaluated the ability of square area measurements of orbital apex crowding, calculated with MDCT, to detect DON. MATERIALS AND METHODS: Fifty-six patients with GO were studied prospectively with complete neuro-ophthalmologic examination and MDCT scanning. Square measurements were taken from coronal sections 12 mm, 18 mm, and 24 mm from the interzygomatic line. The ratio between the extraocular muscle area and the orbital bone area was used as a Cl. Intracranial fat prolapse through the superior orbital fissure was recorded as present or absent. Severity of optic nerve crowding was also subjectively graded on corona! images. Orbits were divided into 2 groups (with or without clinical evidence of DON) and compared. RESULTS: Ninety-five orbits (36 with and 59 without DON) were studied. The CIs at all 3 levels and the subjective crowding score were significantly greater in orbits with DON (P<.001). No significant difference was observed regarding intracranial fat prolapse (P=.105). The area under the ROC curves was 0.91, 0.93, and 0.87 for CIs at 12, 18, and 24 mm, respectively. The best performance was at 18 mm, where a cutoff value of 57.5% corresponded to 91.7% sensitivity, 89.8% specificity, and an odds ratio of 97.2 for detecting DON. A significant correlation (P<.001) between the CIs and VF defects was observed. CONCLUSIONS: Orbital Cls based on area measurements were found to predict DON more reliably than subjective grading of orbital crowding or intracranial fat prolapse.
Resumo:
Purpose: To quantify the risk of new diplopia in inferomedial orbital decompression performed for cosmetic reasons. Methods: Retrospective analysis of 114 patients with Graves orbitopathy who underwent an inferomedial orbital decompression. No patient had diplopia in any of the gaze positions or optic neuropathy. A single coronal slice 9 mm posterior to the lateral orbital rim was employed to quantify the muscular index of the extraocular recti and of the superior complex. A control group of 56 patients imaged for other reasons were also measured. After surgery the oculomotor status of all patients who complained of diplopia and of 51 patients free of diplopia was measured with the prism and cover test in the primary and secondary gaze positions. Results: The rate of new-onset diplopia was 14.0% (16 patients). Eye deviations were confirmed in 14 patients. Of these, 10 had significant strabismus that warranted surgical or prism treatment. Most patients had esotropia associated with small vertical deviations. The size of the medial and inferior recti was significantly associated with the development of diplopia. The estimated odds for the appearance of diplopia in patients with muscle enlargement was 12.76 (medial rectus) and 5.21 (inferior rectus). Small-angle deviations were also detected in 27.4% of patients who did not experience diplopia. Conclusions: Medial and inferior recti enlargement is a strong predictor of new-onset diplopia. A large number of patients who do not report diplopia also present with small-angle deviations. (Ophthal Plast Reconstr Surg 2012;28:204-207)
Resumo:
A 12-year-old girl had a 6-year history of a large soft-tissue mass in her left orbit. The tumor biopsy was previously performed elsewhere when she was 7 years old, but no treatment was offered at that time. Later, the tumor was completely excised, and histologic examination revealed a mesenchymal neoplasia with typical hemangiopericytoma features. At 9 months of follow up, no evidence of local recurrence or metastasis was seen.
Resumo:
Seven sides of cadaver heads were used to compare the surgical exposures provided by the mini-modified orbitozygomatic (MOz) and supra-orbital (SO) approaches. The Optotrak 3020 computerized tracking system (Northern Digital, Waterloo, ON, Canada) was utilized to evaluate the area of anatomical exposure defined by six points: (1) ipsilateral sphenoid ridge; (2) most distal point of the ipsilateral middle cerebral artery (MCA); (3) most distal point of the ipsilateral posterior cerebral artery (PCA); (4) most distal point of the contralateral PCA; (5) most distal point of the contralateral MCA; and (6) contralateral sphenoid ridge. Additionally, angles of approach for the ipsilateral MCA bifurcation, ipsilateral ICA bifurcation, basilar artery tip, contralateral MCA and ICA bifurcation and anterior communicating artery (AcomA) were evaluated, first for SO and then for MOz. An image guidance system was used to evaluate the limits of surgical exposure. No differences in the area of surgical exposure were noted (p > 0.05). Vertical angles were significantly wider for the ipsilateral and contralateral ICA bifurcation, AcomA, contralateral MCA and basilar tip (p < 0.05) for MOz. No differences in horizontal angles were observed between the approaches for the six targets (p > 0.05). There were no differences in the limits of exposure. MOz affords no additional surgical working space. However, our results demonstrate systematically that vertical exposure is improved. The MOz should be performed while planning an approach to these regions and a wider exposure in the vertical axis is needed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We study the orbital evolution of a two co-orbital planet system which undergo tidal interactions with the central star. Our main goal is to investigate the final outcome of a system originally evolving in a 1:1 resonant configuration when the tidal effect acts to change the orbital elements. Preliminary results of the numerical simulations of the exact equations of motions indicate that, at least for equal mass planets, the combined effect of resonant motion and tidal interaction leads the system to orbital instability, including collisions between the planets. We discuss the cases of two hot super-Earths and two hot-Saturn planets, comparing with the results of dynamical maps.
Resumo:
Key technology applications like magnetoresistive sensors or the Magnetic Random Access Memory (MRAM) require reproducible magnetic switching mechanisms. i.e. predefined remanent states. At the same time advanced magnetic recording schemes push the magnetic switching time into the gyromagnetic regime. According to the Landau-Lifschitz-Gilbert formalism, relevant questions herein are associated with magnetic excitations (eigenmodes) and damping processes in confined magnetic thin film structures.rnObjects of study in this thesis are antiparallel pinned synthetic spin valves as they are extensively used as read heads in today’s magnetic storage devices. In such devices a ferromagnetic layer of high coercivity is stabilized via an exchange bias field by an antiferromagnet. A second hard magnetic layer, separated by a non-magnetic spacer of defined thickness, aligns antiparallel to the first. The orientation of the magnetization vector in the third ferromagnetic NiFe layer of low coercivity - the freelayer - is then sensed by the Giant MagnetoResistance (GMR) effect. This thesis reports results of element specific Time Resolved Photo-Emission Electron Microscopy (TR-PEEM) to image the magnetization dynamics of the free layer alone via X-ray Circular Dichroism (XMCD) at the Ni-L3 X-ray absorption edge.rnThe ferromagnetic systems, i.e. micron-sized spin valve stacks of typically deltaR/R = 15% and Permalloy single layers, were deposited onto the pulse leading centre stripe of coplanar wave guides, built in thin film wafer technology. The ferromagnetic platelets have been applied with varying geometry (rectangles, ellipses and squares), lateral dimension (in the range of several micrometers) and orientation to the magnetic field pulse to study the magnetization behaviour in dependence of these magnitudes. The observation of magnetic switching processes in the gigahertz range became only possible due to the joined effort of producing ultra-short X-ray pulses at the synchrotron source BESSY II (operated in the so-called low-alpha mode) and optimizing the wave guide design of the samples for high frequency electromagnetic excitation (FWHM typically several 100 ps). Space and time resolution of the experiment could be reduced to d = 100 nm and deltat = 15 ps, respectively.rnIn conclusion, it could be shown that the magnetization dynamics of the free layer of a synthetic GMR spin valve stack deviates significantly from a simple phase coherent rotation. In fact, the dynamic response of the free layer is a superposition of an averaged critically damped precessional motion and localized higher order spin wave modes. In a square platelet a standing spin wave with a period of 600 ps (1.7 GHz) was observed. At a first glance, the damping coefficient was found to be independent of the shape of the spin-valve element, thus favouring the model of homogeneous rotation and damping. Only by building the difference in the magnetic rotation between the central region and the outer rim of the platelet, the spin wave becomes visible. As they provide an additional efficient channel for energy dissipation, spin waves contribute to a higher effective damping coefficient (alpha = 0.01). Damping and magnetic switching behaviour in spin valves thus depend on the geometry of the element. Micromagnetic simulations reproduce the observed higher-order spin wave mode.rnBesides the short-run behaviour of the magnetization of spin valves Permalloy single layers with thicknesses ranging from 3 to 40 nm have been studied. The phase velocity of a spin wave in a 3 nm thick ellipse could be determined to 8.100 m/s. In a rectangular structure exhibiting a Landau-Lifschitz like domain pattern, the speed of the field pulse induced displacement of a 90°-Néel wall has been determined to 15.000 m/s.rn