963 resultados para orbital currents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predict the field-aligned currents around cusp ion steps produced by pulsed reconnection between the geomagnetic field and an interplanetary magnetic field (IMF) with a B-Y component that is large in magnitude. For B-Y > 0, patches of newly opened flux move westward and eastward in the Northern and Southern Hemispheres, respectively, under the influence of the magnetic curvature force. These flow directions are reversed for B-Y < 0. The speed of this longitudinal motion initially grows with elapsed time since reconnection, but then decays as the newly opened field lines straighten. We predict sheets of field-aligned current on the boundaries between the patches produced by successive reconnection pulses, associated with the difference in the speeds of their longitudinal motion. For low elapsed times since reconnection, near the equatorward edge of the cusp region where the field lines are accelerating, the field-aligned current sheets will be downward or upward in both hemispheres for positive or negative IMF B-Y, respectively. At larger elapsed times since reconnection, as events slow and evolve from the cusp into the mantle region, these field-aligned current directions will be reversed. Observations by the Polar spacecraft on August 26,1998, show the predicted upward current sheets at steps seen in the mantle region for IMF B-Y > 0. Mapped into the ionosphere, the steps coincide with poleward moving events seen by the CUTLASS HF radar. The mapped location of the largest step also coincides with a poleward moving arc seen by the UVI imager on Polar. We show that the arc is consistent with a region of upward field-aligned current that has become unstable, such that a potential drop of about 1 kV formed below the spacecraft. The importance of these observations is that they confirm that the poleward moving events, as seen by the HF radar and the UV imager, are due to pulsed magnetopause reconnection. Milan et al. [2000] noted that the great longitudinal extent of these events means that the required reconnection pulses would have contributed almost all the voltage placed across the magnetosphere at this time. The observations also show that auroral arcs can form on open field lines in response to the pulsed application of voltage at the magnetopause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjunctive measurements made by the Dynamics Explorer 1 and 2 spacecraft on October 22, 1981, under conditions of southward IMF, suggest the existence of a cusp ion injection from a region at the magnetopause with a scale size of ∼ 1/2 to 1 R E . Current signatures observed by the LAPI and MAGB instruments on board DE-2 indicate the existence of a rotation in the magnetic field that is consistent with a filamentary current system. The observed current structure can be interpreted as the ionospheric signature of a flux transfer event (FTE). In addition to this large-scale current structure there exist three small-scale filamentary current pairs. These current pairs close locally and thus, if our interpretation of this event as an FTE is correct, represent the first reported observations of FTE interior structure at low-altitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64–55 and 40–32 ka BP, and two major humid phases ~54–45 and 28–20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard–Oeschger (D–O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the leading mode of interannual climate variability. However, it is unclear how ENSO has responded to external forcing, particularly orbitally induced changes in the amplitude of the seasonal cycle during the Holocene. Here we present a reconstruction of seasonal and interannual surface conditions in the tropical Pacific Ocean from a network of high-resolution coral and mollusc records that span discrete intervals of the Holocene. We identify several intervals of reduced variance in the 2 to 7 yr ENSO band that are not in phase with orbital changes in equatorial insolation, with a notable 64% reduction between 5,000 and 3,000 years ago. We compare the reconstructed ENSO variance and seasonal cycle with that simulated by nine climate models that include orbital forcing, and find that the models do not capture the timing or amplitude of ENSO variability, nor the mid-Holocene increase in seasonality seen in the observations; moreover, a simulated inverse relationship between the amplitude of the seasonal cycle and ENSO-related variance in sea surface temperatures is not found in our reconstructions. We conclude that the tropical Pacific climate is highly variable and subject to millennial scale quiescent periods. These periods harbour no simple link to orbital forcing, and are not adequately simulated by the current generation of models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: The aim of this retrospective study was to evaluate the epidemiology, treatment, and complications of zygomatico-orbital complex (ZOC) and/or zygomatic arch (ZA) fractures either associated with other facial fractures or not over a 71-month period. Material and methods: This survey was performed in three hospitals of Ribeirao Preto in Sao Paulo, Brazil, from August 2002 to July 2008. The records of 1575 patients with facial trauma were reviewed. There were 140 cases of ZOC and ZA fractures either associated with other facial fractures or not. Data regarding gender, age, race, addictions, day of trauma, etiology, signs and symptoms, oral hygiene condition, day of initial evaluation, hospital admission, day of surgery, surgery approach, pattern of fractures, treatment performed, post-operative antibiotic therapy, day of hospital discharge, and post-operative complications were collected. The data were subjected to descriptive statistical analyses. Results: The most frequent fractures affected Caucasian men and occurred during the fourth decade of life. The most frequent etiology was traffic accident, and symptoms and signs included pain and edema. Type I fractures were the main injury observed, and the treatment of choice was always rigid internal fixation. Post-operative antibiotic therapy was solely employed when there was an indication. Complications were observed in 13.1% of the cases. Conclusions: The treatment protocol yielded suitable post-operative results and also showed success rates comparable to published data around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique to calculate the current waveform for both close-up and remote short-circuit faults on DC supplied railways and subways is presented. Exact DC short-circuit current calculation is best performed by sophisticated computer transient simulations. However, an accurate simplified calculation method based on second-order approximation which can be easily executed with the help of a calculator or a spreadsheet program is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a statistical study of the process of orbital determination of the HD82943 extrasolar planetary system, using the current observational data set of N = 165 radial velocity (RV) measurements. Our aim is to analyse the dispersion of possible orbital fits leading to residuals compatible with the best solution, and to discuss the sensitivity of the results with respect to both the data set and the error distribution around the best fit. Although some orbital parameters (e.g. semimajor axis) appear well constrained, we show that the best fits for the HD82943 system are not robust, and at present it is not possible to estimate reliable solutions for these bodies. Finally, we discuss the possibility of a third planet, with a mass of 0.35M(Jup) and an orbital period of 900 d. Stability analysis and simulations of planetary migration indicate that such a hypothetical three-planet system could be locked in a double 2/1 mean-motion resonance, similar to the so-called Laplace resonance of the three inner Galilean satellites of Jupiter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past decade, several observational and theoretical works have provided evidence of the binary nature of eta Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, eta Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of eta Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind-wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of eta Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of i similar to 60 degrees +/- 10 degrees, and i* similar to 35 degrees +/- 10 degrees with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as similar to -40 degrees, showing that periastron passage occurs shortly after conjunction.