949 resultados para optimization model
Resumo:
Tässä työssä optimoidaan keskinopean Wärtsilä 32 -dieselmoottorin jäähdytysjärjestelmää ja tutkitaan taajuusmuuttajien käyttömahdollisuutta kiertopumppujen yhteydessä niin, että järjestelmässä saataisiin kiertämään vain kulloinkin tarvittava määrä vettä. Tutkimuksen mallinnus on toteutettu laatimalla aiemmin käytössä olleista yksinkertaisista simulointimalleista yksi malli, johon on sisällytetty sekä virtauksen että lämmönsiirron laskenta, jotka on aiemmin mallinnettu erillisillä ohjelmilla. Diplomityö on osa projektia, joka on tehty Sähkötekniikan osaston tutkijan Mikko Pääkkösen kanssa yhteistyössä. Tämän diplomityö keskittyy lähinnä virtausteknisiin ja lämmönsiirtoon liittyviin asioihin, kun taas sähkötekniikan osuus on esitetty Mikko Pääkkösen raportissa. Tulosten perustella voidaan sanoa, että taajuusmuuttajakäyttö kannattaa kiertopumppujen yhteydessä. Käyttämällä pumppujen virtaussäätöä voidaan jäähdytysjärjestelmästä jättää monia komponentteja, kuten termostaattiventtiilejä pois. Mallinnetut yksinkertaiset piiriratkaisut näyttävät toimivan ainakin yleisellä tasolla. Tutkimusta pumppujen säädöstä ja tässä projektissa luoduista jäähdytysjärjestelmäkonfiguraatioista kannattaa jatkaa.
Resumo:
In this thesis programmatic, application-layer means for better energy-efficiency in the VoIP application domain are studied. The work presented concentrates on optimizations which are suitable for VoIP-implementations utilizing SIP and IEEE 802.11 technologies. Energy-saving optimizations can have an impact on perceived call quality, and thus energy-saving means are studied together with those factors affecting perceived call quality. In this thesis a general view on a topic is given. Based on theory, adaptive optimization schemes for dynamic controlling of application's operation are proposed. A runtime quality model, capable of being integrated into optimization schemes, is developed for VoIP call quality estimation. Based on proposed optimization schemes, some power consumption measurements are done to find out achievable advantages. Measurement results show that a reduction in power consumption is possible to achieve with the help of adaptive optimization schemes.
Resumo:
In this thesis (TFG) the results of the comparison between different methods to obtain a recombinant protein, by orthologous and heterologous expression, are exposed. This study will help us to identify the best way to express and purify a recombinant protein that will be used for biotechnology applications. In the first part of the project the goal was to find the best expression and purification system to obtain the recombinant protein of interest. To achieve this objective, a system expression in bacteria and in yeast was designed. The DNA was cloned into two different expression vectors to create a fusion protein with two different tags, and the expression of the protein was induced by IPTG or glucose. Additionally, in yeast, two promoters where used to express the protein, the one corresponding to the same protein (orthologous expression), and the ENO2 promoter (heterologous expression). The protein of interest is a NAD-dependent enzyme so, in a second time, its specific activity was evaluated by coenzyme conversion. The results of the TFG suggest that, comparing the model organisms, bacteria are more efficient than yeast because the quantity of protein obtained is higher and better purified. Regarding yeast, comparing the two expression mechanisms that were designed, heterologous expression works much better than the orthologous expression, so in case that we want to use yeast as expression model for the protein of interest, ENO2 will be the best option. Finally, the enzymatic assays, done to compare the effectiveness of the different expression mechanisms respect to the protein activity, revealed that the protein purified in yeast had more activity in converting the NAD coenzyme.
Resumo:
The threats caused by global warming motivate different stake holders to deal with and control them. This Master's thesis focuses on analyzing carbon trade permits in optimization framework. The studied model determines optimal emission and uncertainty levels which minimize the total cost. Research questions are formulated and answered by using different optimization tools. The model is developed and calibrated by using available consistent data in the area of carbon emission technology and control. Data and some basic modeling assumptions were extracted from reports and existing literatures. The data collected from the countries in the Kyoto treaty are used to estimate the cost functions. Theory and methods of constrained optimization are briefly presented. A two-level optimization problem (individual and between the parties) is analyzed by using several optimization methods. The combined cost optimization between the parties leads into multivariate model and calls for advanced techniques. Lagrangian, Sequential Quadratic Programming and Differential Evolution (DE) algorithm are referred to. The role of inherent measurement uncertainty in the monitoring of emissions is discussed. We briefly investigate an approach where emission uncertainty would be described in stochastic framework. MATLAB software has been used to provide visualizations including the relationship between decision variables and objective function values. Interpretations in the context of carbon trading were briefly presented. Suggestions for future work are given in stochastic modeling, emission trading and coupled analysis of energy prices and carbon permits.
Resumo:
We study the lysis timing of a bacteriophage population by means of a continuously infection-age-structured population dynamics model. The features of the model are the infection process of bacteria, the death process, and the lysis process which means the replication of bacteriophage viruses inside bacteria and the destruction of them. The time till lysis (or latent period) is assumed to have an arbitrary distribution. We have carried out an optimization procedure, and we have found that the latent period corresponding to maximal fitness (i.e. maximal growth rate of the bacteriophage population) is of fixed length. We also study the dependence of the optimal latent period on the amount of susceptible bacteria and the number of virions released by a single infection. Finally, the evolutionarily stable strategy of the latent period is also determined as a fixed period taking into account that super-infections are not considered
Resumo:
The purpose of this thesis was to create design a guideline for an LCL-filter. This thesis reviews briefly the relevant harmonics standards, old filter designs and problems faced with the previous filters. This thesis proposes a modified design method based on the “Liserre’s method” presented in the literature. This modified method will take into account network parameters better. As input parameters, the method uses the nominal power, allowed ripple current in converter and network side and desired resonant frequency of the filter. Essential component selection issues for LCL-filter, such as heating, voltage strength, current rating etc. are also discussed. Furthermore, a simulation model used to verify the operation of the designed filter in nominal power use and in transient situations is included in this thesis.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Application of simulated annealing in simulation and optimization of drying process of Zea mays malt
Resumo:
Kinetic simulation and drying process optimization of corn malt by Simulated Annealing (SA) for estimation of temperature and time parameters in order to preserve maximum amylase activity in the obtained product are presented here. Germinated corn seeds were dried at 54-76 °C in a convective dryer, with occasional measurement of moisture content and enzymatic activity. The experimental data obtained were submitted to modeling. Simulation and optimization of the drying process were made by using the SA method, a randomized improvement algorithm, analogous to the simulated annealing process. Results showed that seeds were best dried between 3h and 5h. Among the models used in this work, the kinetic model of water diffusion into corn seeds showed the best fitting. Drying temperature and time showed a square influence on the enzymatic activity. Optimization through SA showed the best condition at 54 ºC and between 5.6h and 6.4h of drying. Values of specific activity in the corn malt were found between 5.26±0.06 SKB/mg and 15.69±0,10% of remaining moisture.
Resumo:
The present research aimed to develop a modeling capable of identifying the ideal profile of swine finishing producers using the interactive performance optimization, which began by verifying qualitative the criteria considered most relevant to the decision-making, generating a closed structured diagnosis that covers the socioeconomic aspects about the activity, until the design of a mathematical model able to translate the data obtained in quantitative information. For the verification, it was proposed a practical study for a universe of 120 members of a cooperative in the state of Rio Grande do Sul, Brazil. The results showed that, from the application and the definition of the ideal profile, it was possible to verify that 82 producers are in the group of those who have obtained a "Good" performance, and to 44 the result is in the range between 86% to 90% from the ideal, which means that most have short or medium-term conditions to evolve their status for the considered "Very Good", where only 12.5% of the producers are currently.
Resumo:
The use of intensity-modulated radiotherapy (IMRT) has increased extensively in the modern radiotherapy (RT) treatments over the past two decades. Radiation dose distributions can be delivered with higher conformality with IMRT when compared to the conventional 3D-conformal radiotherapy (3D-CRT). Higher conformality and target coverage increases the probability of tumour control and decreases the normal tissue complications. The primary goal of this work is to improve and evaluate the accuracy, efficiency and delivery techniques of RT treatments by using IMRT. This study evaluated the dosimetric limitations and possibilities of IMRT in small (treatments of head-and-neck, prostate and lung cancer) and large volumes (primitive neuroectodermal tumours). The dose coverage of target volumes and the sparing of critical organs were increased with IMRT when compared to 3D-CRT. The developed split field IMRT technique was found to be safe and accurate method in craniospinal irradiations. By using IMRT in simultaneous integrated boosting of biologically defined target volumes of localized prostate cancer high doses were achievable with only small increase in the treatment complexity. Biological plan optimization increased the probability of uncomplicated control on average by 28% when compared to standard IMRT delivery. Unfortunately IMRT carries also some drawbacks. In IMRT the beam modulation is realized by splitting a large radiation field to small apertures. The smaller the beam apertures are the larger the rebuild-up and rebuild-down effects are at the tissue interfaces. The limitations to use IMRT with small apertures in the treatments of small lung tumours were investigated with dosimetric film measurements. The results confirmed that the peripheral doses of the small lung tumours were decreased as the effective field size was decreased. The studied calculation algorithms were not able to model the dose deficiency of the tumours accurately. The use of small sliding window apertures of 2 mm and 4 mm decreased the tumour peripheral dose by 6% when compared to 3D-CRT treatment plan. A direct aperture based optimization (DABO) technique was examined as a solution to decrease the treatment complexity. The DABO IMRT technique was able to achieve treatment plans equivalent with the conventional IMRT fluence based optimization techniques in the concave head-and-neck target volumes. With DABO the effective field sizes were increased and the number of MUs was reduced with a factor of two. The optimality of a treatment plan and the therapeutic ratio can be further enhanced by using dose painting based on regional radiosensitivities imaged with functional imaging methods.
Resumo:
This study is dedicated to search engine marketing (SEM). It aims for developing a business model of SEM firms and to provide explicit research of trustworthy practices of virtual marketing companies. Optimization is a general term that represents a variety of techniques and methods of the web pages promotion. The research addresses optimization as a business activity, and it explains its role for the online marketing. Additionally, it highlights issues of unethical techniques utilization by marketers which created relatively negative attitude to them on the Internet environment. Literature insight combines in the one place both technical and economical scientific findings in order to highlight technological and business attributes incorporated in SEM activities. Empirical data regarding search marketers was collected via e-mail questionnaires. 4 representatives of SEM companies were engaged in this study to accomplish the business model design. Additionally, the fifth respondent was a representative of the search engine portal, who provided insight on relations between search engines and marketers. Obtained information of the respondents was processed qualitatively. Movement of commercial organizations to the online market increases demand on promotional programs. SEM is the largest part of online marketing, and it is a prerogative of search engines portals. However, skilled users, or marketers, are able to implement long-term marketing programs by utilizing web page optimization techniques, key word consultancy or content optimization to increase web site visibility to search engines and, therefore, user’s attention to the customer pages. SEM firms are related to small knowledge-intensive businesses. On the basis of data analysis the business model was constructed. The SEM model includes generalized constructs, although they represent a wider amount of operational aspects. Constructing blocks of the model includes fundamental parts of SEM commercial activity: value creation, customer, infrastructure and financial segments. Also, approaches were provided on company’s differentiation and competitive advantages evaluation. It is assumed that search marketers should apply further attempts to differentiate own business out of the large number of similar service providing companies. Findings indicate that SEM companies are interested in the increasing their trustworthiness and the reputation building. Future of the search marketing is directly depending on search engines development.
Resumo:
In this Master’s thesis agent-based modeling has been used to analyze maintenance strategy related phenomena. The main research question that has been answered was: what does the agent-based model made for this study tell us about how different maintenance strategy decisions affect profitability of equipment owners and maintenance service providers? Thus, the main outcome of this study is an analysis of how profitability can be increased in industrial maintenance context. To answer that question, first, a literature review of maintenance strategy, agent-based modeling and maintenance modeling and optimization was conducted. This review provided the basis for making the agent-based model. Making the model followed a standard simulation modeling procedure. With the simulation results from the agent-based model the research question was answered. Specifically, the results of the modeling and this study are: (1) optimizing the point in which a machine is maintained increases profitability for the owner of the machine and also the maintainer with certain conditions; (2) time-based pricing of maintenance services leads to a zero-sum game between the parties; (3) value-based pricing of maintenance services leads to a win-win game between the parties, if the owners of the machines share a substantial amount of their value to the maintainers; and (4) error in machine condition measurement is a critical parameter to optimizing maintenance strategy, and there is real systemic value in having more accurate machine condition measurement systems.
Resumo:
Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.
Resumo:
The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.
Resumo:
An energy model of a belt conveyor was designed. Operation of a belt conveyor was researched. Operational indexes were calculated. Energy optimization process and recommendations were presented.