899 resultados para opetussuunnitelmat - Self Science
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
Domestic violence is a major public health problem, yet most physicians do not effectively identify patients at risk. Medical students and residents are not routinely educated on this topic and little is known about the factors that influence their decisions to include screening for domestic violence in their subsequent practice. In order to assess the readiness of primary care residents to screen all patients for domestic violence, this study utilized a survey incorporating constructs from the Transtheoretical Model, including Stages of Change, Decisional Balance (Pros and Cons) and Self-Efficacy. The survey was distributed to residents at the University of Texas Health Science Center Medical School in Houston in: Internal Medicine, Medicine/Pediatrics, Pediatrics, Family Medicine, and Obstetrics and Gynecology. Data from the survey was analyzed to test the hypothesis that residents in the earlier Stages of Change report more costs and fewer benefits with regards to screening for domestic violence, and that those in the later stages exhibit higher Self-Efficacy scores. The findings from this study were consistent with the model in that benefits to screening (Pros) and Self-Efficacy were correlated with later Stages of Change, however reporting fewer costs (Cons) was not. Very few residents were ready to screen all of their patients.^
Resumo:
Undergraduate research programs have been used as a tool to attract and retain student interest in science careers. This study evaluates the short and long-term benefits of a Summer Science Internship (SSI) at the University of Texas Health Science Center at Houston– School of Public Health – in Brownsville, Texas, by analyzing survey data from alumni. Questions assessing short-term program impact were aimed at three main topics, student: satisfaction with program, self-efficacy for science after completing the program, and perceived benefits. Long-term program impact was assessed by looking at student school attendance and college majors along with perceived links between SSI and future college plans. Students reported high program satisfaction, a significant increase in science self-efficacy and high perceived benefits. At the time data were collected for the study, one-hundred percent of alumni were enrolled in school (high school or college). The majority of students indicated they were interested in completing a science major/career, heavily influenced by their participation in the program.^
Resumo:
Existing data, collected from 1st-year students enrolled in a major Health Science Community College in the south central United States, for Fall 2010, Spring 2011, Fall 2011 and Spring 2012 semesters as part of the "Online Navigational Assessment Vehicle, Intervention Guidance, and Targeting of Risks (NAVIGATOR) for Undergraduate Minority Student Success" with CPHS approval number HSC-GEN-07-0158, was used for this thesis. The Personal Background and Preparation Survey (PBPS) and a two-question risk self-assessment subscale were administered to students during their 1st-year orientation. The PBPS total risk score, risk self-assessment total and overall scores, and Under Representative Minority Student (URMS) status were recorded. The purpose of this study is to evaluate and report the predictive validity of the indicators identified above for Adverse Academic Status Events (AASE) and Nonadvancement Adverse Academic Status Events (NAASE) as well as the effectiveness of interventions targeted using the PBPS among a diverse population of health science community college students. The predictive validity of the PBPS for AASE has previously been demonstrated among health science professions and graduate students (Johnson, Johnson, Kim, & McKee, 2009a; Johnson, Johnson, McKee, & Kim, 2009b). Data will be analyzed using binary logistic regression and correlation using SPSS 19 statistical package. Independent variables will include baseline- versus intervention-year treatments, PBPS, risk self-assessment, and URMS status. The dependent variables will be binary AASE and NAASE status. ^ The PBPS was the first reliable diagnostic and prescriptive instrument to establish documented predictive validity for student Adverse Academic Status Events (AASE) among students attending health science professional schools. These results extend the documented validity for the PBPS in predicting AASE to a health science community college student population. Results further demonstrated that interventions introduced using the PBPS were followed by approximately one-third reduction in the odds of Nonadvancement Adverse Academic Status Events (NAASE), controlling for URMS status and risk self-assessment scores. These results indicate interventions introduced using the PBPS may have potential to reduce AASE or attrition among URMS and nonURMS attending health science community colleges on a broader scale; positively impacting costs, shortages, and diversity of health science professionals.^
Resumo:
Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.
Resumo:
Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.
Resumo:
We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.
Resumo:
Ubiquitous computing software needs to be autonomous so that essential decisions such as how to configure its particular execution are self-determined. Moreover, data mining serves an important role for ubiquitous computing by providing intelligence to several types of ubiquitous computing applications. Thus, automating ubiquitous data mining is also crucial. We focus on the problem of automatically configuring the execution of a ubiquitous data mining algorithm. In our solution, we generate configuration decisions in a resource aware and context aware manner since the algorithm executes in an environment in which the context often changes and computing resources are often severely limited. We propose to analyze the execution behavior of the data mining algorithm by mining its past executions. By doing so, we discover the effects of resource and context states as well as parameter settings on the data mining quality. We argue that a classification model is appropriate for predicting the behavior of an algorithm?s execution and we concentrate on decision tree classifier. We also define taxonomy on data mining quality so that tradeoff between prediction accuracy and classification specificity of each behavior model that classifies by a different abstraction of quality, is scored for model selection. Behavior model constituents and class label transformations are formally defined and experimental validation of the proposed approach is also performed.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.