1000 resultados para nutrient translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Socio-economic development in Europe has exerted increasing pressure on the marine environment. Eutrophication, caused by nutrient enrichment, is evident in regions of all European seas. Its severity varies but has, in places, adversely impacted socio-economic activities. This paper aims to evaluate the effectiveness of recently adopted policies to reduce anthropogenic nutrient inputs to European seas. Nitrogen and phosphorus budgets were constructed for three different periods (prior to severe eutrophication, during severe eutrophication and contemporary) to capture changes in the relative importance of different nutrient sources in four European seas suffering from eutrophication (Baltic Proper, coastal North Sea, Northern Adriatic and North-Western Black Sea Shelf). Policy success is evident for point sources, notably for P in the Baltic and North Seas, but reduction of diffuse sources has been more problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comprehensive, aggregate nutrient budgets were established for two compartments of the North Sea, the shallow coastal and deeper open regions, and for three different periods, representing pre-eutrophication (∼1950), eutrophication (∼1990) and contemporary (∼2000) phases. The aim was to quantify the major budget components, to identify their sources of variability, to specify the anthropogenic components, and to draw implications for past and future policy. For all three periods, open North Sea budgets were dominated (75%) by fluxes from and to the North-East Atlantic; sediment exchange was of secondary importance (18%). For the coastal North Sea, fluxes during the eutrophication period were dominated by sediment exchange (49% of all inputs), followed by exchange with the open sea (21%), and anthropogenic inputs (19%). Between 1950 and 1990, N-loading of coastal waters increased by a factor of 1.62 and P-loading by 1.45. These loads declined after 1990. Interannual variability in Atlantic inflow was found to correspond to a variability of 11% in nutrient load to the open North Sea. Area-specific external loads of both the open and coastal North Sea were below Vollenweider-type critical loads when expressed relative to depth and flushing. External area-specific load of the coastal North Sea has declined since 1990 from 1.8 to about 1.4 g P m−2 y−1 in 2000, which is close to the estimate of 1.3 for 1950. N-load declined less, leading to an increase in N/P ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast Repetition Rate fluorometry (FRRf) measurements of phytoplankton photophysiology from an across-basin South Atlantic cruise (as part of the GEOTRACES programme) characterised two dominant ecophysiological regimes which were interpreted on the basis of nutrient limitation. South of the South Subtropical Convergence (SSTC) in the northern sub-Antarctic sector of the Antarctic Circumpolar Current (ACC) in the Eastern Atlantic Basin, waters are characterised by elevated chlorophyll concentrations, a dominance by larger phytoplankton cells, and low apparent photochemical efficiency (F-v/F-m). Shipboard 24 h iron (Fe) addition incubation experiments confirmed that Fe stress was primarily responsible for the low F-v/F-m, with Fe addition to these waters, either within the artificial bottle additions or naturally occurring downstream enrichment from Gough Island, significantly increasing F-v/F-m values. To the north of the SSTC at the southern boundary of the South Atlantic Gyre, phytoplankton are characterised by high values of F-v/F-m which, coupled with the low macronutrient concentrations and increased presence of picocyanobacteria, are interpreted as conditions of Fe replete, balanced macronutrient-limited growth. Spatial correlation was found between F-v/F-m and Fe: nitrate ratios, supporting the suggestion that the relative supply ratios of these two nutrients can control patterns of limitation and consequently the ecophysiology of phytoplankton in subtropical gyre and ACC regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg−1, alkalinity ranged from 2299 to 2346 μmol kg−1, and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 (extant conditions) or 7.6 (ocean acidification [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between extant versus OA conditions for cell physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical analytical workshop at NIOZ (Royal Netherlands Institute for Sea Research), The Netherlands, was held on 12-15 November 2012. The aim of the workshop was to gain information from the global nutrient analytical community about general problems which arise when measuring nutrients, and then to attempt to investigate these problems in the laboratory, with a small select representative group of International nutrient analysts conducting the lab work. 18 experts were participated and worked simultaneously on four different PO4 gas segmented CFA systems. This report documents the finding of the workshop and describes recommendations based on group consensus which can hopefully assist the larger community of labs worldwide participating in the Inter-Laboratory Comparison RMNS 2012 studies organized by MRI in Japan.