904 resultados para nonionic surfactant
Resumo:
Surfactant monolayers are of interest in a variety of phenomena, including thin film dynamics and the formation and dynamics of foams. Measurement of surface properties has received a continuous attention and requires good theoretical models to extract the relevant physico- chemical information from experimental data. A common experimental set up consists in a shallow liquid layer whose free surface is slowly com- pressed/expanded in periodic fashion by moving two slightly immersed solid barriers, which varies the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. Sometimes, it is not clear whether depar- ture from reversibility is due to non-equilibrium effects or to the ignored fluid dynamics. Here we present a long wave theory that takes the fluid dynamics and the symmetries of the problem into account. In particular, the validity of the spatially-uniform-surfactant-concentration assumption is established and a nonlinear diffusion equation is derived. This allows for calculating spatially nonuniform monolayer dynamics and uncovering the physical mechanisms involved in the surfactant behavior. Also, this analysis can be considered a good means for extracting more relevant information from each experimental run.
Resumo:
A theory is provided for a common experimental set up that is used to measure surface properties in surfactant monolayers. The set up consists of a surfactant monolayer (over a shallow liquid layer) that is compressed/expanded in a periodic fashion by moving in counter-phase two parallel, slightly immersed solid barriers, which vary the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. In this paper, we present a long-wave theory for not so slow oscillations that assumes local equilibrium but takes the fluid dynamics into account. This simple theory uncovers the physical mechanisms involved in the surfactant behavior and allows for extracting more information from each experimental run. The conclusion is that the fluid dynamics cannot be ignored, and that some irreversible dynamics could well have a fluid dynamic origin
Resumo:
The surfactant protein C (SP-C) gene encodes an extremely hydrophobic, 4-kDa peptide produced by alveolar epithelial cells in the lung. To discern the role of SP-C in lung function, SP-C-deficient (−/−) mice were produced. The SP-C (−/−) mice were viable at birth and grew normally to adulthood without apparent pulmonary abnormalities. SP-C mRNA was not detected in the lungs of SP-C (−/−) mice, nor was mature SP-C protein detected by Western blot of alveolar lavage from SP-C (−/−) mice. The levels of the other surfactant proteins (A, B, D) in alveolar lavage were comparable to those in wild-type mice. Surfactant pool sizes, surfactant synthesis, and lung morphology were similar in SP-C (−/−) and SP-C (+/+) mice. Lamellar bodies were present in SP-C (−/−) type II cells, and tubular myelin was present in the alveolar lumen. Lung mechanics studies demonstrated abnormalities in lung hysteresivity (a term used to reflect the mechanical coupling between energy dissipative forces and tissue-elastic properties) at low, positive-end, expiratory pressures. The stability of captive bubbles with surfactant from the SP-C (−/−) mice was decreased significantly, indicating that SP-C plays a role in the stabilization of surfactant at low lung volumes, a condition that may accompany respiratory distress syndrome in infants and adults.
Resumo:
The surfactant protein A (SP-A) gene was disrupted by homologous recombination in embryonic stem cells that were used to generate homozygous SP-A-deficient mice. SP-A mRNA and protein were not detectable in the lungs of SP-A(-/-) mice, and perinatal survival of SP-A(-/-) mice was not altered compared with wild-type mice. Lung morphology, surfactant proteins B-D, lung tissue, alveolar phospholipid pool sizes and composition, and lung compliance in SP-A(-/-) mice were unaltered. At the highest concentration tested, surfactant from SP-A(-/-) mice produced the same surface tension as (+/+) mice. At lower concentrations, minimum surface tensions were higher for SP-A(-/-) mice. At the ultrastructural level, type II cell morphology was the same in SP-A(+/+) and (-/-) mice. While alveolar phospholipid pool sizes were unperturbed, tubular myelin figures were decreased in the lungs of SP-A(-/-) mice. A null mutation of the murine SP-A gene interferes with the formation of tubular myelin without detectably altering postnatal survival or pulmonary function.
Resumo:
Ovine pulmonary surfactant is bactericidal for Pasteurella haemolytica when surfactant and bacteria mixtures are incubated with normal ovine serum. To isolate this component, surfactant (1 mg/ml) was centrifuged at 100,000 x gav, and the supernatant was fractionated by HPLC. Fractions were eluted with acetonitrile (10-100%)/0.1% trifluoracetic acid and tested for bactericidal activity. Amino acid and sequence analysis of three bactericidal fractions showed that fraction 2 contained H-GDDDDDD-OH, fraction 3 contained H-DDDDDDD-OH, and fraction 6 contained H-GADDDDD-OH. Peptides in 0.14 M NaCl/10 microM ZnCl2 (zinc saline solution) induced killing of P. haemolytica and other bacteria comparable to defensins and beta-defensins [minimal bactericidal concentration (MBC)50 range, 0.01-0.06 mM] but not in 0.14 M NaCl/10 mM sodium phosphate buffer, pH 7.2/0.5 mM CaCl2/0.15 mM MgCl2 (MBC50 range, 2.8-11.5 mM). Bactericidal activity resided in the core aspartate hexapeptide homopolymeric region, and MBC50 values of aspartate dipeptide-to-heptapeptide homopolymers were inversely proportional to the number of aspartate residues in the peptide. P. haemolytica incubated with H-DDDDDD-OH in zinc saline solution was killed within 30 min. Ultrastructurally, cells contained flocculated intracellular constituents. In contrast to cationic defensins and beta-defensins, surfactant-associated anionic peptides are smaller in size, opposite in charge, and are bactericidal in zinc saline solution. They are members of another class of peptide antibiotics containing aspartate, which when present in pulmonary secretions may help clear bacteria as a part of the innate pulmonary defense system.
Resumo:
Surfactant protein B (SP-B) is an 8.7-kDa, hydrophobic protein that enhances the spreading and stability of surfactant phospholipids in the alveolus. To further assess the role of SP-B in lung function, the SP-B gene was disrupted by homologous recombination in murine mouse embryonic stem cells. Mice with a single mutated SP-B allele (+/-) were unaffected, whereas homozygous SP-B -/- offspring died of respiratory failure immediately after birth. Lungs of SP-B -/- mice developed normally but remained atelectatic in spite of postnatal respiratory efforts. SP-B protein and mRNA were undetectable and tubular myelin figures were lacking in SP-B -/- mice. Type II cells of SP-B -/- mice contained no fully formed lamellar bodies. While the abundance of SP-A and SP-C mRNAs was not altered, an aberrant form of pro-SP-C, 8.5 kDa, was detected, and fully processed SP-C peptide was markedly decreased in lung homogenates of SP-B -/- mice. Ablation of the SP-B gene disrupts the routing, storage, and function of surfactant phospholipids and proteins, causing respiratory failure at birth.
Resumo:
The incidence of tuberculosis is increasing on a global scale, in part due to its strong association with human immunodeficiency virus (HIV) infection. Attachment of Mycobacterium tuberculosis to its host cell, the alveolar macrophage (AM), is an important early step in the pathogenesis of infection. Bronchoalveolar lavage of HIV-infected individuals demonstrated the presence of a factor which significantly enhances the attachment of tubercle bacilli to AMs 3-fold relative to a normal control population. This factor is surfactant protein A (SP-A). SP-A levels are increased in the lungs of HIV-infected individuals. SP-A levels and attachment of M. tuberculosis to AMs inversely correlate with peripheral blood CD4 lymphocyte counts. Elevated concentrations of SP-A during the progression of HIV infection may represent an important nonimmune risk factor for acquiring tuberculosis, even before significant depletion of CD4 lymphocytes in the peripheral blood occurs.
Resumo:
In this work, montmorillonite (Mt) has been organically modified with ethyl hexadecyl dimethyl ammonium (EHDDMA) in 20, 50, 80 and 100% of the nominal exchange capacity (CEC) of the Mt. A full characterization of the organo-montmorillonite (OMt) obtained has been made, including thermal analysis, X-Ray Diffraction, elemental analysis CHN and nitrogen adsorption. According to the results, 12% in mass of the surfactant added is strongly retained by the Mt. When the mass percentage of EHDDMA exchanged in the OMt is increased up to this level, the interactions OMt–EHDDMA are steeply reduced depending on the EHDDMA content. Clay polymer nanocomposites (CPN) were prepared by melt mixing of EVA and different loads of OMt. The CPN were compress molded to obtain 1 mm thick sheets, which have been characterized according to their mechanical, thermal and rheological behaviors. The major changes in the structure of the OMt are obtained for low contents of EHDDMA. Nevertheless, the CPN containing OMt exchanged at 20 and 50% of the CEC show relatively low effect of the EHDDMA while the mechanical response and rheological behavior of CPN with OMt modified at 80 and 100% of the CEC are much more pronounced.
Resumo:
The inner surface of fused-silica capillaries has been coated with a dense/homogeneous coating of commercial multi-wall carbon nanotubes (MWCNTs) using a stable ink as deposit precursor. Solubilization of the MWCNTs was achieved in water/ethanol/dimethylformamide by the action of a surfactant, which can switch between a neutral or an ionic form depending on the pH of the medium, which thus becomes the driving force for the entire deposition process. Careful control of the experimental conditions has allowed us to selectively deposit CNTs on the inner surface of insulating silica capillaries by a simple, reproducible, and easily adaptable method.
Resumo:
Grant no. R-802959.
Resumo:
Mode of access: Internet.
Resumo:
The behavior of [alpha]-monoglycerides.
Resumo:
Cover title.
Resumo:
Once considered unique to the lung, surfactant proteins have been clearly identified in the intestine and peritoneum and are suggested to exist in several other organs. In the lung, surfactant proteins assist in the formation of a monolayer of surface-active phospholipid at the liquid-air interface of the alveolar lining, reducing the surface tension at this surface. In contrast, surface-active phospholipid adsorbed to articular surfaces has been identified as the load-bearing boundary lubricant of the joint. This raises the question of whether surfactant proteins in synovial fluid (SF) are required for the formation of the adsorbed layer in normal joints. Proteins from small volumes of equine SF were resolved by 1- and 2-dimensional polyacrylamide gel electrophoresis and detected by Western blotting to investigate the presence of surfactant proteins. The study showed that surfactant proteins A and D (SP-A and SP-D) are present in the SF of normal horses. We suggest that, like surface-active phospholipid, SP-A and SP-D play a significant role in the functioning of joints. Next will be clarification of the roles of surfactant proteins as disease markers in a variety of joint diseases, such as degenerative joint disease and inflammatory problems.