903 resultados para night vision system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation autonomous underwater vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localization, and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods; however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on self-similar landmarks that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that the system performs exceptionally on limited processing power and demonstrates how the combined vision and controller system enables robust target identification and docking in a variety of operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To compare the on-road driving performance of visually impaired drivers using bioptic telescopes with age-matched controls. Methods. Participants included 23 persons (mean age = 33 ± 12 years) with visual acuity of 20/63 to 20/200 who were legally licensed to drive through a state bioptic driving program, and 23 visually normal age-matched controls (mean age = 33 ± 12 years). On-road driving was assessed in an instrumented dual-brake vehicle along 14.6 miles of city, suburban, and controlled-access highways. Two backseat evaluators independently rated driving performance using a standardized scoring system. Vehicle control was assessed through vehicle instrumentation and video recordings used to evaluate head movements, lane-keeping, pedestrian detection, and frequency of bioptic telescope use. Results. Ninety-six percent (22/23) of bioptic drivers and 100% (23/23) of controls were rated as safe to drive by the evaluators. There were no group differences for pedestrian detection, or ratings for scanning, speed, gap judgments, braking, indicator use, or obeying signs/signals. Bioptic drivers received worse ratings than controls for lane position and steering steadiness and had lower rates of correct sign and traffic signal recognition. Bioptic drivers made significantly more right head movements, drove more often over the right-hand lane marking, and exhibited more sudden braking than controls. Conclusions. Drivers with central vision loss who are licensed to drive through a bioptic driving program can display proficient on-road driving skills. This raises questions regarding the validity of denying such drivers a license without the opportunity to train with a bioptic telescope and undergo on-road evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravitreal injections of GABA antagonists, dopamine agonists and brief periods of normal vision have been shown separately to inhibit form-deprivation myopia (FDM). Our study had three aims: (i) establish whether GABAergic agents modify the myopia protective effect of normal vision, (ii) investigate the receptor sub-type specificity of any observed effect, and (iii) consider an interaction with the dopamine (DA) system. Prior to the period of normal vision GABAergic agents were applied either (i) individually, (ii) in combination with other GABAergic agents (an agonist with an antagonist), or (iii) in combination with DA agonists and antagonists. Water injections were given to groups not receiving drug treatments so that all experimental eyes received intravitreal injections. As shown previously, constant form-deprivation resulted in high myopia and when diffusers were removed for 2 h per day the period of normal vision greatly reduced the FDM that developed. GABA agonists inhibited the protective effect of normal vision whereas antagonists had the opposite effect. GABAA/C agonists and D2 DA antagonists when used in combination were additive in suppressing the protective effect of normal vision. A D2 DA agonist restored some of the protective effect of normal vision that was inhibited by a GABA agonist (muscimol). The protective effect of normal vision against form-deprivation is modifiable by both the GABAergic and DAergic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot’s working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense posegraph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels. The global level contains a sparse topological map extracted from the initial graph using a dual clustering approach. The local level contains a spherical view stored at each node of the global level. The spherical views provide both an appearance signature for the nodes, which the robot uses to localize itself in the environment, and heading information when the robot uses the map for visual navigation. In order to show the usefulness of the map, an experiment was conducted where the map was used for multiple visual navigation tasks inside an office workplace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.