935 resultados para new therapeutic applications
Resumo:
Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.
Resumo:
The year 2011 was full of significant advances in all areas of medicine. Whether small or large issues, they all have an impact on daily practice in general internal medicine. For example, intravenous administration of diuretics in heart failure shows no benefit. But double dose may improve symptoms faster. Direct Xa inhibitors are emerging as alternative to anti-vitamin K. beta-blockers reduce overall mortality in COPD and do not worsen lung function significantly. Each year, the chief residents from the Department of internal medicine at the University hospital of Lausanne meet to share their readings. Twelve new therapeutic considerations of 2011 are reviewed here.
Resumo:
a substantial proportion of non-small-cell lung cancer (NSCLC), and adenocarcinoma in particular, depends on a so-called 'driver mutation' for their malignant phenotype. This genetic alteration induces and sustains tumorigenesis, and targeting of its protein product can result in growth inhibition, tumor response and increased patient survival. NSCLC can thus be subdivided into clinically relevant molecular subsets. Mutations in EGFR best illustrate the therapeutic relevance of molecular classification. This article reviews the scope of presently known driving molecular alterations, including ROS1, BRaF, KRaS, HER2 and PIK3Ca, with a special emphasis on aLK rearrangements, and outlines their potential therapeutic applications.
Resumo:
The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.
Resumo:
Background and aims: Increased pancreatitis associated protein (PAP) mRNA has been reported in active inflammatory bowel disease (IBD). The aims of the current study were to characterise PAP production in IBD and the effects of PAP on inflammation. Patients and methods: Serum PAP levels were determined in healthy controls (n¿=¿29), inflammatory controls (n¿=¿14), and IBD patients (n¿=¿171). Ex vivo PAP secretion in intestinal tissue was measured in 56 IBD patients and 13 healthy controls. Cellular origin of PAP was determined by immunohistochemistry. The effects of exogenous PAP on nuclear factor ¿B (NF¿B) activation, proinflammatory cytokine production, and endothelial adhesion molecule expression were also analysed ex vivo. Results: Patients with active IBD had increased serum PAP levels compared with controls, and these levels correlated with clinical and endoscopic disease severity. Ex vivo intestinal PAP synthesis was increased in active IBD and correlated with endoscopic and histological severity of inflammatory lesions. PAP localised to colonic Paneth cells. Incubation of mucosa from active Crohn¿s disease with PAP dose dependently reduced proinflammatory cytokines secretion. PAP prevented TNF-¿ induced NF¿B activation in monocytic, epithelial, and endothelial cells and reduced proinflammatory cytokine mRNA levels and adhesion molecule expression. Conclusions: PAP is synthesised by Paneth cells and is overexpressed in colonic tissue of active IBD. PAP inhibits NF¿B activation and downregulates cytokine production and adhesion molecule expression in inflamed tissue. It may represent an anti-inflammatory mechanism and new therapeutic strategy in IBD.
Resumo:
La diarrhée congénitale de sodium est une maladie génétique très rare. Les enfants touchés par cette maladie présentent une diarrhée aqueuse sévère accompagnée d'une perte fécale de sodium et bicarbonates causant une déshydratation hyponatrémique et une acidose métabolique. Des analyses génétiques ont identifié des mutations du gène Spint2 comme cause de cette maladie. Le gène Spint2 code pour un inhibiteur de sérine protéase transmembranaire exprimé dans divers épithéliums tels que ceux du tube digestif ou des tubules rénaux. Le rôle physiologique de Spint2 n'est pas connu. De plus, aucun partenaire physiologique de Spint2 n'a été identifié et le mécanisme d'inhibition par Spint2 nous est peu connu. Le but de ce projet est donc d'obtenir de plus amples informations concernant la fonction et le rôle de Spint2 dans le contexte de la diarrhée congénitale de sodium, cela afin de mieux comprendre la physiopathologie des diarrhées et peut-être d'identifier de nouvelles cibles thérapeutiques. Un test fonctionnel dans les ovocytes de Xenopus a identifié les sérine protéases transmembranaires CAPI et Tmprssl3 comme potentielles cibles de Spint2 dans la mesure où ces deux protéases n'étaient plus bloquées par le mutant de Spint2 Y163C qui est associé avec la diarrhée congénitale de sodium. Des expériences fonctionnelles et biochimiques plus poussées suggèrent que l'inhibition de Tmprssl3 par Spint2 est le résultat d'une interaction complexe entre ces deux protéines. Les effets des sérine protéases transmembranaires sur l'échangeur Na+-H+ NHE3, qui pourrait être impliqué dans la pathogenèse de la diarrhée congénitale de sodium ont aussi été testés. Un clivage spécifique de NHE3 par la sérine protéase transmembranaire Tmprss3 a été observé lors d'expériences biochimiques. Malheureusement, la pertinence physiologique de ces résultats n'a pas pu être évaluée in vivo, étant donné que le modèle de souris knockout conditionnel de Spint2 que nous avons créé ne montrait une réduction de l'expression de Spint2 que de 50% et aucun phénotype. En résumé, ce travail met en évidence deux nouveaux partenaires possibles de Spint2, ainsi qu'une potentielle régulation de NHE3 par des sérine protéases transmembranaires. Des expériences supplémentaires faites dans des modèles animaux et lignées cellulaires sont requises pour évaluer la pertinence physiologique de ces données et pour obtenir de plus amples informations au sujet de Spint2 et de la diarrhée congénitale de sodium. - The congenital sodium diarrhea is a very rare genetic disease. Children affected by this condition suffer from a severe diarrhea characterized by watery stools with a high fecal loss of sodium and bicarbonates, resulting in hyponatremic dehydration and metabolic acidosis. Genetic analyses have identified mutations in the Spint2 gene as a cause of this disease. The spint2 gene encodes a transmembrane serine protease inhibitor expressed in various epithelial tissues including the gastro-intestinal tract and renal tubules. The physiological role of Spint2 is completely unknown. In addition, physiological partners of Spint2 are still to be identified and the mechanism of inhibition by Spint2 remains elusive. Therefore, the aim of this project was to get insights about the function and the role of Spint2 in the context of the congenital sodium diarrhea in order to better understand the pathophysiology of diarrheas and maybe identify new therapeutic targets. A functional assay in Xenopus oocytes identified the membrane-bound serine proteases CAPI and Tmprssl3 as potential targets of Spint2 because both proteases were no longer inhibited by the mutant Spint2 Y163C that has been associated with the congenital diarrhea. Further functional and biochemical experiments suggested that the inhibition of Tmprssl3 by Spint2 occurs though a complex interaction between both proteins. The effects of membrane-bound serine proteases on the Na+-H+ exchanger NHE3, which has been proposed to be involved in the pathogenesis of the congenital sodium diarrhea, were also tested. A specific cleavage of NHE3 by the membrane-bound serine protease Tmprss3 was observed in biochemical experiments. Unfortunately, the physiological relevance of these results could not be assessed in vivo since the conditional Spint2 knockout mouse model that we generated showed a reduction in Spint2 expression of only 50% and displayed no phenotype. Briefly, this work provides two new potential partners of Spint2 and emphasizes a putative regulation of NHE3 by membrane-bound serine proteases. Further work done in animal models and cell lines is required to assess the physiological relevance of these results and to obtain additional data about Spint2 and the congenital diarrhea.
Resumo:
Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.
Resumo:
Erosive hand osteoarthritis is common and debilitating. Diagnosis is based on the presence of bone erosions which can appear late. Ultrasonography allows earlier diagnosis. The presence of apatite deposits could be of poor prognosis. Non pharmacological treatment includes the explanation of the inflammatory phenomena involved and the use of splints and physical therapy. Drug therapy includes analgesics, NSAIDs and infiltration of a steroid. Chondroitin sulfates have an analgesic and functional effect proven. DMARDs such as hydroxychloroquine and methotrexate have been used successfully. Some patients also benefited from isotope synoviortheses. New therapeutic ways, based on the pathophysiology of the disease, are new under evaluation.
Resumo:
Gout is an inflammatory arthritis caused by monosodium urate (MSU) crystal deposits in and around the joint. The formation of urinary calculi can also occur in gout, but are less common than arthritis. Gout usually presents with recurrent episodes of joint inflammation, which over time lead to tophus formation and joint destruction. In the last decade, significant advances have been made regarding not only the epidemiology and genetics of gout and hyperuricemia but also the mechanisms of inflammation and treatment of gout. In addition, knowledge concerning the key role of interleukin 1 (IL-1) has provided new therapeutic perspectives. However, the current management of gout is often suboptimal, with many Patienten either not receiving adequate treatment or being unable to tolerate existing treatments. New therapeutic agents provide interesting new options for Patienten with difficult-to-treat gouty arthritis.The English full-text version of this is available at SpringerLink (under "Supplemental").
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.
Resumo:
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Resumo:
The EASL Monothematic Conference on Translational Research in Viral Hepatitis brought together a group of leading scientists and clinicians working on both, basic and clinical aspects of viral hepatitis, thereby building bridges from bench to bedside. This report recapitulates the presentations and discussions at the conference held in Lyon, France on November 29-30, 2013. In recent years, great advances have been made in the field of viral hepatitis, particularly in hepatitis C virus (HCV) infection. The identification of IL28B genetic polymorphisms as a major determinant for spontaneous and treatment-induced HCV clearance was a seminal discovery. Currently, hepatologists are at the doorstep of even greater advances, with the advent of a wealth of directly acting antivirals (DAAs) against HCV. Indeed, promising results have accumulated over the last months and few years, showing sustained virological response (SVR) rates of up to 100% with interferon-free DAA combination therapies. Thus, less than 25years after its identification, HCV infection may soon be curable in the vast majority of patients, highlighting the great success of HCV research over the last decades. However, viral hepatitis and its clinical complications such as liver cirrhosis and hepatocellular carcinoma (HCC) remain major global challenges. New therapeutic strategies to tackle hepatitis B virus (HBV) and hepatitis D virus (HDV) infection are needed, as current therapies have undeniable limitations. Nucleoside/nucleotide analogues (NUC) can efficiently control HBV replication and reduce or even reverse liver damage. However, these drugs have to be given for indefinite periods in most patients to maintain virological and biochemical responses. Although sustained responses off treatment can be achieved by treatment with (pegylated) interferon-α, only about 10-30% of patients effectively resolve chronic hepatitis B. It was the goal of this conference to review the progress made over the last years in chronic viral hepatitis research and to identify key questions that need to be addressed in order to close the gap between basic and clinical research and to develop novel preventive and treatment approaches for this most common cause of liver cirrhosis and HCC.
Resumo:
Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2 g/day, 6 months) significantly improved the negative symptoms and reduced side-effects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2 g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDAdependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Phase synchronization phenomena are appealing because they can be associated to synchronized phases while the amplitudes stay uncorrelated. MPS measures the degree of interactions among the recorded neuronal oscillators by quantifiying to what extent they behave like a macro-oscillator (i.e. the oscillators are phase synchronous). To assess the whole-head synchronization topography, we computed the MPS sensor-wise over the cluster of locations defined by the sensor itself and he surrounding ones belonging to its second-order neighborhood (Carmeli et al, 2005). Such a cluster spans about 12 cm on average. Abstracts 245 Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. Importantly, the topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization (Liddle, 1987) thus linking EEG synchronization to the improvement of clinical picture. Discussion: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.
Resumo:
In advanced Parkinson's disease (PD), the emergence of symptoms refractory to conventional therapy poses therapeutic challenges. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in noninvasive brain stimulation as an alternative therapeutic tool. The rationale for its use draws from the concept that reversing abnormalities in brain activity and physiology thought to cause the clinical deficits may restore normal functioning. Currently the best evidence in support of this concept comes from DBS, which improves motor deficits, and modulates brain activity and motor cortex physiology, although whether a causal interaction exists remains largely undetermined. Most trials of noninvasive brain stimulation in PD have applied repetitive transcranial magnetic stimulation (rTMS), targeting the motor cortex. Current studies suggest a possible therapeutic potential for rTMS and transcranial direct current stimulation (tDCS), but clinical effects so far have been small and negligible with regard to functional independence and quality of life. Approaches to potentiate the efficacy of rTMS include increasing stimulation intensity and novel stimulation parameters that derive their rationale from studies on brain physiology. These novel parameters are intended to simulate normal firing patterns or to act on the hypothesized role of oscillatory activity in the motor cortex and basal ganglia with regard to motor control and its contribution to the pathogenesis of motor disorders. Noninvasive brain stimulation studies will enhance our understanding of PD pathophysiology and might provide further evidence for potential therapeutic applications.
Resumo:
Rationale: The purpose of this article is to demonstrate the use of homologous culture cells in treating an advanced coccon formation of the hand and three extended squamous cell carcinomas of the lower and upper limb in a patient with recessive dystrophic epidermolysis bullosa. The preparation and application of these cells in the operation room are being described. Methods: A number of surgical approaches have been described to correct these deformities in order to improve function.We propose a new therapeutic approach of treating loss of motion and independent digital function as well as coverage of large skin defects in a patient with recessive dystrophic epidermolysis bullosa by using autologous culture cells. Surgical treatment of these patients is really difficult because of the existing skin fragility. Furthermore, surgical wounds do not easily heal because of recurrent blisters and erosions as well as due to the patients' poor nutricial status. Results: We report our experience of mutiple extended cutaneous squamous cell carcinomas arising in our patient which were successfully managed using autologous composite cultured skin grafts. The cocoon hand deformity was also treated with the limb becoming functional. Conclusion: The use of autologous keratinocytes and fibroblasts in epidermolysis bullosa is hereby outlined for the fist time.