993 resultados para neutron activation analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling at Site 765 in the Argo Abyssal Plain sampled sediments and oceanic crust adjacent to the Australian margin. Some day, this site will be consumed in the Java Trench. An intensive analytical program was conducted to establish this site as a geochemical reference section forcrustal recycling calculations. About 150 sediment samples from Site 765 were analyzed for major and trace elements. Downhole trends in the sediment analyses agree well with trends in sediment mineralogy, as well as in Al and K logs. The primary signal in the geochemical variability is dilution of a detrital component by both biogenic silica and calcium carbonate. Although significant variations in the nonbiogenic component occur through time, its overall character is similar to nearby Canning Basin shales, which are typical of average post-Archean Australian shales (PAAS). The bulk composition of the hole is calculated using core descriptions to weight the analyses appropriately. However, a remarkably accurate estimate of the bulk composition of the hole can be made simply from PAAS and the average calcium carbonate and aluminum contents of the hole. Most elements can be estimated within 30% in this way. This means that estimating the bulk composition of other sections dominated by detrital and biogenic components may require little analytical effort: calcium carbonate contents, average Al contents, and average shale values can be taken from core descriptions, geochemical logs, and the literature, respectively. Some of the geochemical systematics developed at Site 765 can be extrapolated along the entire Sunda Trench. However, results are general, and Site 765 should serve as a useful reference for estimating the compositions of other continental margin sections approaching trenches around the world (e.g., outboard of the Lesser Antilles, Aegean, and Eolian arcs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral and whole-rock geochemical data are presented for chilled dike margins from the lower sheeted dike complex of Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) Hole 504B. Compositions of phenocrystic plagioclase (An80-89); olivine (Fo82-86); clinopyroxene (Wo52En40Fs8, with Cr2O3 up to 1.2%); and rare chromian spinel (Cr# 43) are consistent with those from the lavas and the upper dike complex recovered previously (DSDP Legs 69, 70, 83, and ODP Leg 111). Major and trace element compositions fall in group D of Autio and Rhodes (1983) and have high CaO/Na2O, and low TiO2, K2O, and (La/Sm)N values consistent with previous analyses from this site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31°42.194'S, 143°30.331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ~20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts recovered from Sites 595 and 596 on Mesozoic crust in the southwest Pacific range from olivine-bearing tholeiites to ferrobasalts. Despite having undergone extensive low-grade alteration, which has raised K and Rb abundances, the basalts have consistent interelement ratios of Ti, Zr, Hf, rare-earth elements, Y, Th, Ik, and Nb. La/Ta (-18), Lan/Ybn (0.6), Ti/Zr (115), Zr/Nb (20), and Th/Hf (0.08) ratios all fall within the range of N-type mid-ocean-ridge basalt. The basalts from Sites 595 and 596 indicate that the Mesozoic Pacific crust was derived from a mantle source by processes similar to those operating at the present-day East Pacific Rise.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book deals with behavior of phosphorus and its concentration in oceanic phosphorites. The major stages of marine geochemical cycle of phosphorus including its supply to sedimentary basins, precipitation from sea water, distribution and speciation in bottom sediments, diagenetic redistribution, and relation to other elements are under consideration. Formation of recent phosphorites as a culmination of phosphate accumulation in marine and oceanic sediments is examined. Distribution, structure, mineral and chemical compositions of major phosphorite deposits of various age on continental margins, as well as on submarine plateaus, uplifts and seamounts and some islands are described. A summary of trace element abundances in oceanic phosphorites is presented. Problems of phosphorite origin are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siliceous deposits drilled on Ocean Drilling Program Leg 129 accumulated within a few degrees of the equator during the Jurassic through early Tertiary, as constrained by paleomagnetic data. During the Jurassic and Early Cretaceous, radiolarian ooze, mixed with a minor amount of pelagic clay, was deposited near the equator, and overall accumulation rates were moderate to low. At a smaller scale, in more detail, periods of relatively higher accumulation rates alternated with periods of very low accumulation rates. Higher rates are represented by radiolarite and limestone; lower rates are represented by radiolarian claystone. Our limited data from Leg 129 suggests that accumulation of biogenic deposits was not symmetrical about the equator or consistent over time. In the Jurassic, sedimentation was siliceous; in the Cretaceous there was significant calcareous deposition; in the Tertiary claystone indicates significantly lower accumulation rates at least the northern part of the equatorial zone. Accumulation rates for Leg 129 deposits in the Cretaceous were higher in the southern part of the equatorial zone than in the northern part, and the southern side of this high productivity zone extended to approximately 15°S, while the northern side extended only to about 5°N. Accumulation rates are influenced by relative contributions from various sediment sources. Several elements and element ratios are useful for discriminating sedimentary sources for the equatorial depositional environments. Silica partitioning calculations indicate that silica is dominantly of biogenic origin, with a detrital component in the volcaniclastic turbidite units, and a small hydrothermal component in the basal sediments on spreading ridge basement of Jurassic age at Site 801. Iron in Leg 129 sediments is dominantly of detrital origin, highest in the volcaniclastic units, with a minor hydrothermal component in the basal sediments at Site 801. Manganese concentrations are highest in the units with the lowest accumulation rates. Fe/Mn ratios are >3 in all units, indicating negligible hydrothermal influence. Magnesium and aluminum concentrations are highest in the volcaniclastic units and in the basal sediments at Site 801. Phosphorous is very low in abundance and may be detrital, derived from fish parts. Boron is virtually absent, as is typical of deep-water deposits. Rare earth element concentrations are slightly higher in the volcaniclastic deposits, suggesting a detrital source, and lower in the rest of the lithologic units. Rare earth element abundances are also low relative to "average shale." Rare earth element patterns indicate all samples are light rare earth element enriched. Siliceous deposits in the volcaniclastic units have patterns which lack a cerium anomaly, suggesting some input of rare earth elements from a detrital source; most other units have a distinct negative Ce anomaly similar to seawater, suggesting a seawater source, through adsorption either onto biogenic tests or incorporation into authigenic minerals for Ce in these units. The Al/(Al + Fe + Mn) ratio indicates that there is some detrital component in all the units sampled. This ratio plotted against Fe/Ti shows that all samples plot near the detrital and basalt end-members, except for the basal samples from Site 801, which show a clear trend toward the hydrothermal end-member. The results of these plots and the association of high Fe with high Mg and Al indicate the detrital component is dominantly volcaniclastic, but the presence of potassium in some samples suggests some terrigenous material may also be present, most likely in the form of eolian clay. On Al-Fe-Mn ternary plots, samples from all three sites show a trend from biogenic ooze at the top of the section downhole to oceanic basalt. On Si-Fe-Mn ternary plots, the samples from all three sites fall on a trend between equatorial mid-ocean spreading ridges and north Pacific red clay. Copper-barium ratios show units that have low accumulation rates plot in the authigenic field, and radiolarite and limestone samples that have high accumulation rates fall in the biogenic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book deals with results of complex geological and geophysical studies in the Doldrums and Arkhangelsky Fracture Zones of the Central Atlantic. Description of the main features of bottom relief, sediments and crustal structure, geomagnetic field, composition of igneous and sedimentary rocks are given in the book. The authors made conclusions on tectonic delamination of the oceanic crust and existence of specific rock complexes forming non-spreading blocks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major-, trace-, and rare-earth element analyses of the basaltic rocks recovered from the basement of the Sulu Sea and of lithic clasts from the pyroclastic unit representing the acoustic basement of the Cagayan Ridge, are presented. The major and trace elements were measured by X-ray fluorescence techniques, and rare-earth elements by instrumental neutron activation analysis. These data show that the Sulu Sea basalts are back-arc tholeiites and the lithic clasts are basalts, basaltic andesites, and andesites typical of volcanic arc suites erupted on continental crust. Petrogenetic modeling is used to show that the Sulu Sea basalts were derived from a heterogeneous mantle, probably representing subcontinental lithosphere, with contributions from a subduction component. The Sulu Sea is interpreted as a back-arc basin formed by rifting of an Oligocene to early Miocene volcanic arc leaving the Cagayan Ridge as a remnant arc. This event occurred during northward subduction of the Celebes Sea basement beneath the Oligocene to early Miocene arc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts recovered on DSDP Leg 92 include all the major basalt types so far recovered from the ocean crust of the eastern Pacific. Basalts from Holes 597, 597A, 597B, 597C, and 599B are tholeiites exhibiting all the mineralogical and geochemical characteristics of N-type mid-ocean ridge basalts (MORB). Fragments of ferrobasalts and alkali basalts were also obtained, however, from Holes 60IB and 602B, respectively. Hole 597C, which penetrated 91 m into basement and is the deepest hole so far drilled in fast-spreading crust, yielded basalts that can be divided into three major lithologic units. The lowest unit, Unit III, contains modal olivine and comprises basalts which, at about 8 to 10% MgO, are as basic as any sampled from fast-spreading crust. The middle unit, Unit II, is the most evolved; its basalts are olivine free and contain between 6 and 7.5% MgO. The upper unit, Unit I, is intermediate in composition between Units II and III; it is characterized by both modal olivine and glomerocrysts made up of plagioclase and rare olivine. Unit I is probably a massive flow, whereas Units II and III may be massive flows or sills. The basalts appear to have undergone three stages of alteration ("deuteric," "relatively reducing," and "oxidizing"), the intensity of alteration decreasing markedly downcore. Hole 597B, at 26.4 m of basement penetration the only other "deep" hole, contains just one lithologic unit, which closely resembles Unit I of Hole 597C. Petrogenetic modeling reveals that the three lithologic units in Hole 597C are cogenetic and that they were derived from a depleted mantle source similar to the source of the tholeiites and ferrobasalts sampled in other holes; the alkali basalts are the only rocks derived from enriched mantle. Lavas of Unit III probably lay on the olivine-plagioclase cotectic, whereas the other lavas lay on an olivine-plagioclase-clinopyroxene peritectic. Some 60% of closed-system crystallization is needed to generate the most-evolved from the last-fractionated tholeiite, and a further 50% crystallization (80% overall) is needed to generate the ferrobasalts. Xenocrysts of calcic plagioclase and pseudomorphosed olivine in tholeiites from Hole 597B and Unit I of Hole 597C, and in the ferrobasalts from Hole 601B, provide evidence, however, that some magma mixing may have taken place.