944 resultados para nerve grafts
Resumo:
Objectives: Our objective was to develop an experimental model for the noninvasive and objective evaluation of facial nerve regeneration in rats using a motor nerve conduction test (electromyography). Methods: Twenty-two rats were submitted to neurophysiological evaluation using motor nerve conduction of the mandibular branch of the facial nerve to obtain the compound muscle action potentials (CMAPs). To record the CM APs, we used two needle electrodes that were inserted into the lower lip muscle of the rat. A supramaximal electrical stimulus was applied, and the values of CMAP latency, amplitude, length, area, and stimulus intensity obtained from each side were compared by use of the Wilcoxon test. Results: There was no significant difference (all p > 0.05) in latency, amplitude, duration, area, or intensity of stimuli between the two sides. The amplitudes ranged between 1.61 and 8.30 mV, the latencies between 1.03 and 1.97 ms, and the stimulus intensities between 1.50 and 2.90 mA. Conclusions: This is a noninvasive, easy, and highly reproducible method that contributes to an improvement of the techniques previously described and may contribute to future studies of the degeneration and regeneration of the facial nerve.
Resumo:
Background: The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results: Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions: These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.
Resumo:
Adenosine is the first drug of choice in the treatment of supraventricular arrhythmias. While the effects of adenosine on sympathetic nerve activity (SNA) have been investigated, no information is available on the effects on cardiac vagal nerve activity (VNA). We assessed in rats the responses of cardiac VNA, SNA and cardiovascular variables to intravenous bolus administration of adenosine. In 34 urethane-anaesthetized rats, cardiac VNA or cervical preganglionic sympathetic fibres were recorded together with ECG, arterial pressure and ventilation, before and after administration of three doses of adenosine (100, 500 and 1000 mu g kg-1). The effects of adenosine were also assessed in isolated perfused hearts (n= 5). Adenosine induced marked bradycardia and hypotension, associated with a significant dose-dependent increase in VNA (+204 +/- 56%, P < 0.01; +275 +/- 120%, P < 0.01; and +372 +/- 78%, P < 0.01, for the three doses, respectively; n= 7). Muscarinic blockade by atropine (5 mg kg-1, i.v.) significantly blunted the adenosine-induced bradycardia (-56.0 +/- 4.5%, P < 0.05; -86.2 +/- 10.5%, P < 0.01; and -34.3 +/- 9.7%, P < 0.01, respectively). Likewise, adenosine-induced bradycardia was markedly less in isolated heart preparations. Previous barodenervation did not modify the effects of adenosine on VNA. On the SNA side, adenosine administration was associated with a dose-dependent biphasic response, including overactivation in the first few seconds followed by a later profound SNA reduction. Earliest sympathetic activation was abolished by barodenervation, while subsequent sympathetic withdrawal was affected neither by baro- nor by chemodenervation. This is the first demonstration that acute adenosine is able to activate cardiac VNA, possibly through a central action. This increase in vagal outflow could make an important contribution to the antiarrhythmic action of this substance.
Resumo:
Salivary gland function is regulated by both the sympathetic and parasympathetic nervous systems. Previously we showed that the basal sympathetic outflow to the salivary glands (SNA(SG)) was higher in hypertensive compared to normotensive rats and that diabetes reduced SNA(SG) discharge at both strains. In the present study we sought to investigate how SNA(SG) might be modulated by acute changes in the arterial pressure and whether baroreceptors play a functional role upon this modulation. To this end, we measured blood pressure and SNA(SG) discharge in Wistar-Kyoto rats (WRY-intact) and in WRY submitted to sinoaortic denervation (WRY-SAD). We made the following three major observations: (i) in WRY-intact rats, baroreceptor loading in response to intravenous infusion of the phenylephrine evoked an increase in SNA(SG) spike frequency (81%, p<0.01) accompanying the increase mean arterial pressure ((sic)MAP: +77 +/- 14 mmHg); (ii) baroreceptor unloading with sodium nitroprusside infusion elicited a decrease in SNA(SG) spike frequency (17%, p<0.01) in parallel with the fall in arterial blood pressure ((sic)MAP: 30 3 mmHg) in WRY-intact rats; iii) in the WRY-SAD rats, phenylephrine-evoked rises in the arterial pressure ((sic)MAP: +56 +/- 6 mmHg) failed to produce significant changes in the SNA(SG) spike frequency. Taken together, these data show that SNA(SG) increases in parallel with pharmacological-induced pressor response in a baroreceptor dependent way in anaesthetised rats. Considering the key role of SNA(SG) in salivary secretion, this mechanism, which differs from the classic cardiac baroreflex feedback loop, strongly suggests that baroreceptor signalling plays a decisive role in the regulation of salivary gland function. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
It is clear that sudden unexpected death in epilepsy (SUDEP) is mainly a problem for people with refractory epilepsy, but our understanding of the best way to its prevention is still incomplete. Although the pharmacological treatments available for epilepsies have expanded, some antiepileptic drugs are still limited in clinical efficacy. In the present paper, we described an experience with vagus nerve stimulation (VNS) treatment by opening space and providing the opportunity to implement effective preventative maps to reduce the incidence of SUDEP in children and adolescents with refractory epilepsy.
Resumo:
In imaging diagnosis, redundant nerve roots of the cauda equina are characterized by the presence of elongated, enlarged and tortuous nerve roots in close relationship with a high-grade lumbar spinal canal stenosis. This is not an independent entity, but it is believed to be a consequence of the chronic compression at the level of the lumbar canal stenosis and thus may be part of the natural history of lumbar spinal stenosis. The present paper is aimed at reviewing the histopathological, electrophysiological and imaging findings, particularly at magnetic resonance imaging, as well as the clinical meaning of this entity. As the current assessment of canal stenosis and root compression is preferably performed by means of magnetic resonance imaging, this is the imaging method by which the condition is identified. The recognition of redundant nerve roots at magnetic resonance imaging is important, particularly to avoid misdiagnosing other conditions such as intradural arteriovenous malformations. The literature approaching the clinical relevance of the presence of redundant nerve roots is controversial. There are articles suggesting that the pathological changes of the nerve roots are irreversible at the moment of diagnosis and therefore neurological symptoms are less likely to improve with surgical decompression, but such concept is not a consensus.
Resumo:
Nerve-related complications have been frequently reported in dental procedures, and a very frequent type of occurrence involves the inferior alveolar nerve (IAN). The nerve injury in humans often results in persistent pain accompanied by allodynia and hyperalgesia. In this investigation, we used an experimental IAN injury in rats, which was induced by a Crile hemostatic clamp, to evaluate the effects of laser therapy on nerve repair. We also studied the nociceptive behavior (von Frey hair test) before and after the injury and the behavioral effects of treatment with laser therapy (emitting a wavelength of 904 nm, output power of 70 Wpk, a spot area of *0.1 cm2, frequency of 9500 Hz, pulse time 60 ns and an energy density of 6 J/cm2). As neurotrophins are essential for the process of nerve regeneration, we used immunoblotting techniques to preliminarily examine the effects of laser therapy on the expression of nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF). The injured animals treated with laser exhibited an improved nociceptive behavior. In irradiated animals, there was an enhanced expression of NGF (53%) and a decreased BDNF expression (40%) after laser therapy. These results indicate that BDNF plays a locally crucial role in pain-related behavior development after IAN injury, increasing after lesions (in parallel to the installation of pain behavior) and decreasing with laser therapy (in parallel to the improvement of pain behavior). On the other hand, NGF probably contributes to the repair of nerve tissue, in addition to improving the pain-related behavior.
Resumo:
[EN] OBJECTIVES: To assess the usefulness of clinical findings, nerve conduction studies and ultrasonography performed by a rheumatologist to predict success in patients with idiopathic carpal tunnel syndrome (CTS) undergoing median nerve release. METHODS: Ninety consecutive patients with CTS (112 wrists) completed a specific CTS questionnaire and underwent physical examination and nerve conduction studies. Ultrasound examination was performed by a rheumatologist who was blind to any patient's data. Outcome variables were improvement >25% in symptoms of the CTS questionnaire and patient's overall satisfaction (5-point Likert scale) at 3 months postoperatively. Success was defined as improvement in both outcome variables. Receiver operating characteristics (ROC) curves and logistic regression analyses were used to assess the best predictive combination of preoperative findings. RESULTS: Success was achieved in 63% of the operated wrists. Utility parameters and area under the ROC curve (AUC) for individual findings was poor, ranging from 0.481 of the nerve conduction study to 0.634 of the cross-sectional area at tunnel outlet. Logistic regression identified the preoperative US parameters as the best predictive variables for success after 3 months. The best predictive combination (AUC=0.708) included a negative Phalen maneuver, plus absence of thenar atrophy, plus less than moderately abnormalities on nerve conduction studies plus a large maximal cross-sectional area along the tunnel by ultrasonography. CONCLUSION: Although cross-sectional area of the median nerve was the only predictor of success after three months of surgical release, isolated preoperative findings are not reliable predictors of success in patients with idiopathic CTS. A combination of findings that include ultrasound improves prediction.
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn
Resumo:
Congenital pseudarthrosis of the tibia (CPT) is caused by an ill-defined, segmental disturbance of periosteal bone formation leading to spontaneous bowing, followed by fracture and subsequent pseudarthrosis in the first 2 years of life. The results of conventional treatment modalities (e.g., bracing, internal and external fixation and bone grafting) are associated with high failure rates in terms of persisting pseudarthrosis, malunion and impaired growth. As a more promising alternative, a more aggressive approach, including wide resection of the affected bone, reconstruction with free vascularised fibula grafts from the healthy contralateral leg and stable external fixation at a very early stage has been suggested. Between 1995 and 2007, 10 children (age 12-31 months, median 20 months) suffering from CPT were treated at our institutions according to this principle. Two patients were treated before a fracture had occurred. The length of the fibula graft was 7-9cm. End-to-end anastomoses were performed at the level of the distal tibia stump. The follow-up was 80 months (median, range 12 months to 12 years). Radiologic examination at 6 weeks postoperatively showed normal bone density and structure of the transplanted fibula in all cases and osseous consolidation at 19 of the 20 graft/tibia junctions. One nonunion was sucessfully treated with bone grafting and plate osteosynthesis. Pin-tract infection occurred in three patients. Five children sustained graft fractures that were successfully treated with internal or external fixation. Two patients developed diminished growth of the affected limb or foot; all others had equal limb length and shoe size. At long-term follow-up, tibialisation of the transplant had occurred, and normal gait and physical activities were possible in all children. We conclude that in spite of a relatively high complication rate and the reluctance to perform free flap surgery in infants at this young age, the present concept may successfully prevent the imminent severe sequelae associated with CPT.
Resumo:
In this exploratory study we evaluated sensitivity and target specificity of sinuvertebral nerve block (SVNB) for the diagnosis of lumbar diskogenic pain. Diskography has been the diagnostic gold standard. Fifteen patients with positive diskography underwent SVNB via interlaminar approach to the posterior aspect of the disk. Success was defined as > or = 80% pain reduction or excellent relief of physical restrictions after the block. The sensitivity was 73.3% (95% CI: 50.9%-95.7%). The target specificity was 40% (15.2%-64.8%). The results indicate that SVNB cannot yet replace diskography but encourage future studies to improve its target specificity.
Resumo:
BACKGROUND: Local anaesthetic blocks of the greater occipital nerve (GON) are frequently performed in different types of headache, but no selective approaches exist. Our cadaver study compares the sonographic visibility of the nerve and the accuracy and specificity of ultrasound-guided injections at two different sites. METHODS: After sonographic measurements in 10 embalmed cadavers, 20 ultrasound-guided injections of the GON were performed with 0.1 ml of dye at the classical site (superior nuchal line) followed by 20 at a newly described site more proximal (C2, superficial to the obliquus capitis inferior muscle). The spread of dye and coloration of nerve were evaluated by dissection. RESULTS: The median sonographic diameter of the GON was 4.2 x 1.4 mm at the classical and 4.0 x 1.8 mm at the new site. The nerves were found at a median depth of 8 and 17.5 mm, respectively. In 16 of 20 in the classical approach and 20 of 20 in the new approach, the nerve was successfully coloured with the dye. This corresponds to a block success rate of 80% (95% confidence interval: 58-93%) vs 100% (95% confidence interval: 86-100%), which is statistically significant (McNemar's test, P=0.002). CONCLUSIONS: Our findings confirm that the GON can be visualized using ultrasound both at the level of the superior nuchal line and C2. This newly described approach superficial to the obliquus capitis inferior muscle has a higher success rate and should allow a more precise blockade of the nerve.
Resumo:
Retrospective case-referent study.