909 resultados para nanoscale, nanotechnology, nanostructures, nanoparticles, atomic scale, fabrication, manipulation,


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we report the results of two experiments on visual attention conducted with patients with early-onset schizophrenia. These experiments investigated the effect of irrelevant spatial-scale information upon the processing of relevant spatial-scale information, and the ability to shift the spatial scale of attention, across consecutive trials, between different levels of the hierarchical stimulus. Twelve patients with early-onset schizophrenia and matched controls performed local-global tasks under: (1) directed attention conditions with a consistency manipulation and (2) divided-attention conditions. In the directed-attention paradigm, the early-onset patients exhibited the normal patterns of global advantage and interference, and were not unduly affected by the consistency manipulation. Under divided-attention conditions, however, the early-onset patients exhibited a local-processing deficit. The source of this local processing deficit lay in the prolonged reaction time to local targets, when these had been preceded by a global target, but not when preceded by a local target. These findings suggest an impaired ability to shift the spatial scale of attention from a global to a local spatial scale in early-onset schizophrenia. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room-temperature measurements of the magnetic susceptibility of Bovine Serum Albumin-based nanocapsules (50 to 300 nm in size) loaded with different amounts of maghemite nanoparticles (7.6 nm average diameter) have been carried out in this study The field (H) dependence of the imaginary peak susceptibility (f(P)) of the nanocomposite samples was investigated in the range of 0 to 4 kOe. From the analysis of the f(P) x H curves the concentration (N) dependence of the effective maghemite magnetocrystalline energy barrier (E) was obtained. Analysis of the E x N data was performed using a modified Morup-Tronc [Phys. Rev. Lett. 72, 3278 (1994)] model, from which a huge contribution from the magnetocrystalline surface anisotropy was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MU assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nano particles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the Surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix. On the basis of the data obtained from galvanostatic intermittent titration technique (GITT), the values of lithium ion diffusion coefficient (D(Li)) for TiO(2)/WO(x)H(y) were larger compared with those for TiO(2). The rate of the coloration front in the matrices was investigated using a spectroelectrochemical method based oil GITT, allowing the determination of the ""optical"" diffusion coefficient (D(op)) as a function of the amount of lithium ions previously inserted into the matrices. The Values of D(Li) and D(op) suggested the existence of phases with distinct contribution to lithium ion diffusion rates and electrochromic efficiency. Moreover, these results aided a better understanding of the temporal change of current density and absorbance during the ionic electro-insertion, which is important for the possible application of these materials in lithium ion batteries and electrohromic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Encyclopedia of Nanoscience and Nanotechnology® is the World's first encyclopedia ever published in the field of nanotechnology. The 10-volume Encyclopedia is an unprecedented single reference source that provides ideal introduction and overview of most recent advances and emerging new aspects of nanotechnology spanning from science to engineering to medicine. Although there are many books/handbook and journals focused on nanotechnology, no encyclopedic reference work has been published covering all aspects of nanoscale science and technology dealing with materials synthesis, processing, fabrication, probes, spectroscopy, physical properties, electronics, optics, mechanics, biotechnology, devices, etc. The Encyclopedia fills this gap to provide basic information on all fundamental and applied aspects of nanotechnology by drawing on two decades of pioneering research. It is the only scientific work of its kind since the beginning of the field of nanotechnology bringing together core knowledge and the very latest advances. It is written for all levels audience that allows non-scientists to understand the nanotechnology while providing up-to-date latest information to active scientists to experts in the field. This outstanding encyclopedia is an indispensable source for research professionals, technology investors and developers seeking the most up-to-date information on the nanotechnology among a wide range of disciplines from science to engineering to medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology industry is progressing with prospects of substantial benefits to economics and science. Superparamagnetic iron oxide nanoparticles (ION) have been showing excellent magnetic properties, biocompatibility and biodegradability, broadening their potential applications and importance in the biomedical field

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A celulose é o polímero renovável mais abundante do mundo. É conhecido pela sua excelente biocompatibilidade, propriedades térmicas e mecânicas. A celulose assim como os polipéptideos e o ADN, pertence a uma família de moléculas orgânicas que dão origem à formação de fases líquidas cristalinas (LCs) colestéricas. A Passiflora Edulis, tal como outras plantas trepadeiras, possui longas e flexíveis gavinhas que permitem à planta encontrar um suporte para se fixar. As gavinhas podem assumir a forma de espirais ou de hélices consoante sejam sustentadas por apenas uma ou por ambas as extremidades. As hélices apresentam muitas vezes duas porções helicoidais, uma esquerda e outra direita, separadas por um segmento recto denominado perversão. Este comportamento é consequência da curvatura intrínseca das gavinhas produzidas pela planta trepadeira. O mesmo comportamento pode ser observado em micro e nanofibras celulósicas fabricadas a partir de soluções líquido-cristalinas, numa escala três a quatro ordens de grandeza inferior à das gavinhas. Este facto sugere que o modelo físico utilizado tenha invariância de escala. Neste trabalho é feito o estudo de fibras e jactos que imitam as estruturas helicoidais apresentadas pelas gavinhas das plantas trepadeiras. As fibras e jactos são produzidos a partir de soluções líquidas cristalinas celulósicas. De modo a determinar as características morfológicas e estruturais, que contribuem para a curvatura das fibras, foram utilizadas técnicas de imagem por ressonância magnética (MRI), microscopia óptica com luz polarisada (MOP), microscopia electrónica de varrimento (SEM) e microscopia de força atómica (AFM) . A variação da forma das estruturas helicoidais com a temperatura parece ser relevante para o fabrico de membranas não tecidas para aplicação em sensores termo-mecânicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica