961 resultados para mollusc inoculation
Resumo:
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding - lecithotrophic - larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.
Resumo:
Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.
Resumo:
Unusually high concentrations of ammonium have been observed in a Vertisol below 1 m depth in southeast Queensland. This study investigated the possibility that an absence of nitrification is allowing this ammonium to accumulate and persist over time, and examined the soil environmental characteristics that may be responsible for limiting nitrifying organisms. The possibility that anaerobiosis, soil acidity, soil salinity, low organic carbon concentrations, and/or an absence of active nitrifying microorganisms were responsible for limiting nitrification was examined in laboratory and field studies. The presence/absence of anaerobic conditions was determined qualitatively using a field test to give an indication of electron lability. In addition, an incubation study was conducted and soil environmental conditions were improved for nitrifying organisms by adjusting the pH from 4.4 to 7, adjusting the electrical conductivity from 1.6 to 0.5 dS/m, amending with a soluble carbon substrate at a rate of 500 mg/kg, and using microorganisms from the surface horizon to inoculate to the subsoil. Over a 180-day period no nitrification was detected in the control samples from the incubation study, indicating that an extremely low rate of nitrification is likely to be responsible for allowing ammonium to accumulate in this soil. Analysis of the effect of soil environmental conditions on nitrification revealed that anaerobic conditions did not exist at depth and that pH, EC, organic carbon, and inoculation treatments added in isolation had no effect on nitrification. However, when inoculum was added to the soil in combination with pH, a significant increase in nitrification was observed, and the greatest amount of nitrification was observed when inoculum, pH, and EC treatments were added in combination. It was concluded that the reason for the low rate of nitrification in this soil is primarily the absence of a significant population of active nitrifying microorganisms, which may have been unable to colonise the subsoil environment due to its acidic, and to a lesser extent, its saline environment.
Resumo:
This study confirms that Australian isolates of Sclerotinia minor can produce fertile apothecia and further demonstrates that ascospores collected from these apothecia are pathogenic to sunflower (Helianthus annuus). Sunflower is a known host of the related fungus Sclerotinia sclerotiorum and is grown in some regions where S. minor is known to occur. Head rot symptoms were produced following inoculation with S. minor ascospores. Predictive modeling using CLIMEX software suggested that conditions suitable for carpogenic germination of S. minor probably occur in Australia particularly in southern regions. Carpogenic germination is probably a rare event in northern regions and, if it does occur, probably does not coincide with anthesis in sunflower crops, therefore allowing disease escape.
Resumo:
We describe for the first time the application of fast neutron mutagenesis to the genetic dissection of root nodulation in legumes. We demonstrate the utility of chromosomal deletion mutations through production of a soybean supernodulation mutant FN37 that lacks the internal autoregulation of nodulation mechanism. After inoculation with microsymbiont Bradyrhizobium japonicum, FN37 forms at least 10 times more nodules than the wild type G. soja parent and has a phenotype identical to that of chemically induced allelic mutants nts382 and nts1007 (NTS-1 locus). Reciprocal grafting of shoots and roots confirmed systemic shoot control of the FN37 nodulation phenotype. RFLP/PCR marker pUTG132a and AFLP marker UQC-IS1 which are tightly linked to NTS-1 allowed the isolation of BAC contigs delineating both ends of the deletion. The genetic/physical distance ratio in the NTS-1 region is 279 kb/cM. The deletion is estimated to be about 460 kb based on the absence of markers and bacterial artificial chromosomes (BAC) ends as well as genetic and physical mapping. Deletion break points were determined physically and placed within flanking BAC contigs.
Resumo:
Sperm ultrastructure is described for the nudibranch gastropod Cadlinella ornatissima, type species of the genus Cadlinella (Thiele). Although C. ornatissima exhibits most of the sperm features characteristic of other Opisthobranchia and the Pulmonata (a small, rounded acrosomal vesicle, a complex, helical, mitochondrial derivative - partially paracrystalline, coarse fibres associated with the axoneme), it also possesses a number of previously undescribed and possibly unique features (a longitudinally inrolled acrosomal pedestal, an axial structure within the cavity of the acrosomal pedestal, an electron-dense collar at the anterior region of the acrosomal pedestal, the presence of crystalloid bodies within the glycogen helices of the mitochondrial derivative). To our knowledge this is the first report of crystalloid bodies in mature sperm of any mollusc. Collectively this evidence raises questions concerning the affinities and systematic position of Cadlinella within the Nudibranchia. The peculiar nature of the sperm differences, in comparison with other investigated nudibranchs, suggest that Cadlinella is not easily linked to either the Cadlinidae or Chromodorididae, and should be considered incertae sedis.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
The Kunjin replicon was used to express a polytope that consisted of seven hepatitis C virus cytotoxic T lymphocyte epitopes and one influenza cytotoxic T lymphocyte epitope for vaccination studies. The self-replicating nature of, and expression from, the ribonucleic acid was confirmed in vitro . Initial vaccinations with one dose of Kun-Poly ribonucleic acid showed that an influenza-specific cytotoxic T lymphocyte response was elicited more efficiently by intradermal inoculation compared with intramuscular delivery. Two micrograms of ribonucleic acid delivered in the ear pinnae of mice was sufficient to elicit a detectable cytotoxic T lymphocyte response 10 days post-vaccination. Further vaccination studies showed that four of the seven hepatitis C virus cytotoxic T lymphocyte epitopes were able to elicit weak cytotoxic T lymphocyte responses whereas the influenza epitope was able to elicit strong, specific cytotoxic T lymphocyte responses following three doses of Kun-Poly ribonucleic acid. These studies vindicate the use of the Kunjin replicon as a vector to deliver encoded proteins for the development of cell-mediated immune responses.
Resumo:
Undiluted culture filtrates of two commercial products of Trichoderma spp., Trichopel and Trichoflow, and two isolates of Penicillium citrinum completely inhibited the conidial germination of macroconidia of Claviceps africana , the cause of ergot or sugary disease of sorghum (Sorghum bicolor) in vitro . Similarly, Pseudomonas aeruginosa and Burkholderia cepacia completely inhibited macroconidial germination, with the former being more effective at high dilutions. In contrast, these bacterial isolates failed to inhibit infection in vivo in glasshouse tests with ergot-inoculated sorghum, but all fungal biocontrol agents (including an isolate of Epicoccum nigrum) reduced the severity of disease (percentage of infected spikelets per panicle), in some cases completely inhibiting the development of ergot. In a second glasshouse trial, optimum control was achieved when the biocontrol agents were applied 3-7 days before inoculation with conidia of C. africana .
Resumo:
A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 mug of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN,viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus.
Resumo:
Early pregnancy factor (EPF) is a secreted protein, present in serum during early pregnancy and essential for maintaining viability of the embryo. It is a homologue of chaperonin 10 (Cpn10) but, unlike Cpn10, it has an extracellular role. EPF has immunosuppressive and growth regulatory properties. Previously we have reported the preparation of recombinant EPF (rEPF) and shown that treatment with rEPF will suppress clinical signs of MBP-EAE in Lewis rats and PLP-EAE in SJL/J mice. In the present study, these findings have been extended to investigate possible mechanisms involved in the action of EPF. Following treatment of mice with rEPF from the day of inoculation, there were fewer infiltrating CD3+ and CD4+ cells in the parenchyma of the spinal cord during the onset of disease and after the initial episode, compared with mice treated with vehicle. Expression of the integrins LFA-1, VLA-4 and Mac-1 and of members of the immunoglobulin superfamily of adhesion molecules ICAM-1 and VCAM-1 was suppressed in the central nervous system (CNS) following rEPF treatment. The expression of PECAM-1 was not affected. To determine if rEPF suppressed T cell activation in the periphery, the delayed-type hypersensitivity (DTH) reaction of normal BALB/c mice to trinitrochlorobenzene (TNCB) following treatment with rEPF was studied. The results showed that treatment with rEPF suppressed the DTH reaction, demonstrating the ability of EPF to downregulate the cell-mediated immune response. These results indicate that suppression of immunological mechanisms by rEPF plays a major role in the reduction of clinical signs of disease in experimental autoimmune encephalomyelitis (EAE). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with immunosuppressive and growth factor properties that has been shown to suppress acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP) in Lewis rats. EAE is associated with infiltration of the central nervous system (CNS) with inflammatory cells. Spontaneous recovery involves the loss of T lymphocytes from the CNS and the selective apoptosis of Vbeta8.2(+) cells. In the present study, T cell, macrophage (CD11b/c(+)) and B cell (CD45RA(+)) populations in spinal cord and popliteal lymph nodes (LN) of Lewis rats with EAE were quantitated and apoptosis was studied. Rats were treated with EPF or vehicle. Following treatment on day 14 after inoculation with MBP, neither 1 x 100 mug nor 2 x 100 mug doses of EPF affected the total number of cells infiltrating the spinal cord on day 15, although the higher dose caused a decrease in the number of CD5(+) and CD11b/c(+) cells. Treatment with 2 x 100 mug/day from days 10 to 14 decreased the total number of infiltrating cells, and the numbers of CD5(+), CD11b/c(+) and CD45RA(+) cells. Apoptosis was unaffected. No alteration on the number or type of inflammatory cells in the popliteal LN was observed after treatment on days 10-14. However, treatment with EPF from days 0 to 11 increased the total number of T and B cells and CD5(+) T cells found on day 12 in the LN. Similarly, there was an increase in the frequency of MBP-reactive cells in the LN as determined by limiting dilution analysis. These results suggest that EPF treatment reduces the numbers of lymphocytes and macrophages in the CNS, possibly through an effect on cell trafficking. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ergot, caused by Claviceps africana, has emerged as a serious threat to sorghum hybrid seed production worldwide. In the absence of gene-for-gene-based qualitative resistance in commercial cultivars, varieties with high pollen production that can escape ergot infection are preferred. Recent demonstration of differences in ergot susceptibility among male-sterile lines has indicated the presence of partial resistance. Using chitin-specific fluorescin-isothiocyanate-conjugated wheat germ agglutin and callose-specific aniline blue, this study investigated the process of sorghum ovary colonization by C. africana. Conidia germinated within 24 h after inoculation (a.i.); the pathogen was established in the ovary by 79 h a.i., and at least half of the ovary was converted into sphacelial tissue by 120 h a.i. Changes in fungal cell wall chitin content and strategic callose deposition in the host tissue were associated with penetration and invasion of the ovary. The rate of ovary colonization differed in three male-sterile lines that also differed in ergot susceptibility. This work demonstrates a possible histological basis for partial resistance in male-sterile sorghum lines that could lay the foundation for variety improvement through further breeding and selection.
Resumo:
Variation in the concentration of virus in different parts of the plant has implications for virus-indexing programs. To allow more reliable detection of Sugarcane mosaic virus (SCMV), the distribution of the virus in sugarcane plants after artificial inoculation was studied using a reverse transcription polymerase chain reaction (RT-PCR) assay. Leaves of susceptible and moderately resistant sugarcane were mechanically inoculated with SCMV 6 weeks after planting. Weekly for 8 weeks after inoculation, plants were examined for mosaic symptoms and samples of leaves, roots and tillers were tested by RT-PCR to detect virus. SCMV moved from the point of inoculation to younger leaves, roots and tillers and eventually to leaves that emerged prior to inoculation. The pattern of SCMV distribution in moderately resistant and susceptible cultivars was not substantially different. However, the virus moved more slowly in the moderately resistant than in the susceptible cultivar. Young leaves proved to be the most suitable tissue for testing.
Resumo:
Atualmente, tem-se difundido a aplicação de inoculante no sulco de semeadura na cultura da soja, mas há poucas informações que dão suporte a essa prática e comprovam sua eficiência em diferentes ambientes manejados sob plantio direto. Este trabalho teve como objetivo avaliar a viabilidade da aplicação de inoculantes na cultura da soja, via semente e sulco de semeadura, em solo já cultivado ou não com soja. Foram realizados dois experimentos em campo a partir de dezembro de 2004 em Latossolo Vermelho-Amarelo, seguindo o mesmo método e tratamentos, porém em dois locais distintos, com ou sem cultivo anterior de soja. Foram testados oito tratamentos: (1) inoculação via semente (inoculante + fungicida + micronutriente); (2) sem inoculação (fungicida + micronutriente); (3) testemunha (semente pura, sem tratamento); (4) aplicação no sulco-dose 1 (dose do inoculante recomendada no sulco); (5) aplicação no sulco-dose 2 (duas vezes a dose recomendada no sulco); (6) aplicação no sulco-dose 3 (três vezes a dose recomendada no sulco); (7) sulco-dose 1 + inoculação via semente; e (8) adubação com N (200 kg ha-1 N). Foram avaliados massa de matéria seca de nódulos e número de nódulos totais e nódulos viáveis e não-viáveis aos 30 e 75 dias após emergência. A melhor nodulação foi obtida com aplicação de inoculante + fungicida + micronutriente via semente no solo ainda não cultivado. No solo previamente cultivado com soja, destacaram-se os tratamentos uma e duas vezes a dose do inoculante no sulco. Menores valores de massa seca de nódulos na soja foram obtidos no tratamento com adubação mineral. A aplicação via sulco do inoculante mostrou-se uma prática viável, em razão da semelhança dos resultados obtidos com a aplicação tradicional via semente.