918 resultados para mobile mesh network
Resumo:
Cellular networks have been widely used to support many new audio-and video-based multimedia applications. The demand for higher data rate and diverse services has driven the research on multihop cellular networks (MCNs). With its ad hoc network features, an MCN can offer many additional advantages, such as increased network throughput, scalability and coverage. However, providing ad hoc capability to MCNs is challenging as it may require proper wireless interfaces. In this article, the architecture of IEEE 802.16 network interface to provide ad hoc capability for MCNs is investigated, with its focus on the IEEE 802.16 mesh networking and scheduling. Several distributed routing algorithms based on network entry mechanism are studied and compared with a centralized routing algorithm. It is observed from the simulation results that 802.16 mesh networks have limitations on providing sufficient bandwidth for the traffic from the cellular base stations when a cellular network size is relatively large. © 2007 IEEE.
Resumo:
The environment of a mobile ad hoc network may vary greatly depending on nodes' mobility, traffic load and resource conditions. In this paper we categorize the environment of an ad hoc network into three main states: an ideal state, wherein the network is relatively stable with sufficient resources; a congested state, wherein some nodes, regions or the network is experiencing congestion; and an energy critical state, wherein the energy capacity of nodes in the network is critically low. Each of these states requires unique routing schemes, but existing ad hoc routing protocols are only effective in one of these states. This implies that when the network enters into any other states, these protocols run into a sub optimal mode, degrading the performance of the network. We propose an Ad hoc Network State Aware Routing Protocol (ANSAR) which conditionally switches between earliest arrival scheme and a joint Load-Energy aware scheme depending on the current state of the network. Comparing to existing schemes, it yields higher efficiency and reliability as shown in our simulation results. © 2007 IEEE.
Resumo:
Within project Distributed eLearning Center (DeLC) we are developing a system for distance and eLearning, which offers fixed and mobile access to electronic content and services. Mobile access is based on InfoStation architecture, which provides Bluetooth and WiFi connectivity. On InfoStation network we are developing multi-agent middleware that provides context-aware, adaptive and personalized access to the mobile services to the users. For more convenient testing and optimization of the middleware a simulation environment, called CA3 SiEnv, is being created.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.
Resumo:
A framework that aims to best utilize the mobile network resources for video applications is presented in this paper. The main contribution of the work proposed is the QoE-driven optimization method that can maintain a desired trade-off between fairness and efficiency in allocating resources in terms of data rates to video streaming users in LTE networks. This method is concerned with the control of the user satisfaction level from the service continuity's point of view and applies appropriate QoE metrics (Pause Intensity and variations) to determine the scheduling strategies in combination with the mechanisms used for adaptive video streaming such as 3GP/MPEG-DASH. The superiority of the proposed algorithms are demonstrated, showing how the resources of a mobile network can be optimally utilized by using quantifiable QoE measurements. This approach can also find the best match between demand and supply in the process of network resource distribution.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.
Resumo:
Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. This paper proposes a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. The authors show that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.
Resumo:
Az elektronikus hírközlő hálózat rohamszerű fejlesztésének igénye az elektronikus szolgáltatások széles körű elterjedésével az állami döntéshozókat is fejlesztéspolitikai koncepciók kidolgozására és azok végrehajtására ösztönzi. Az (információs) társadalom fejlődése és az ennek alapjául szolgáló infokommunikációs szolgáltatások használata alapvetően függ a szélessávú infrastruktúra fejlesztésétől, az elektronikus hírközlő hálózat elérésének lehetőségétől. Az állami szerepvállalási hajlandóság 2011-től kezdődően jelentősen megnőtt az elektronikus hírközlési területen. Az MVM NET Zrt. megalapítása, a NISZ Zrt. átszervezése, a GOP 3.1.2-es pályázat és a 4. mobilszolgáltató létrehozásának terve mind mutatják a kormányzat erőteljes szándékát a terület fejlesztésére. A tanulmányban bemutatásra kerül, hogy az állam milyen beavatkozási eszközökkel rendelkezik az elektronikus hírközlő hálózat fejlesztésének ösztönzésére. A szerző ezt követően a négy, jelentős állami beavatkozás elemzését végzi el annak vizsgálatára, hogy megfelelő alapozottsággal született-e döntés az állami szerepvállalásról. _____ With the widespread use of the Internet, the need for the rapid development of the digital communication networks has prompted government policy makers also to conceptualize and implement development policy. The advancement of the (information) society and the use of information communication technology as a prerequisite of it are fundamentally determined by the development of broadband infrastructure and whether broadband access to the digital telecommunication network is available. The propensity of the government to play a bigger role in the field of electronical communication has increased significantly from 2011. The setup of MVM NET Zrt. / Hungarian Electricity NET Ltd./, the realignment of NISZ Zrt. / National Info communication Services Company Limited by Shares - NISZ Ltd./, the GOP 3.1.2. tender and the plan to enable a new, i.e. the fourth mobile network operator to enter the market all indicate the robust intention of the government to develop this field. The study shows the tools of government intervention for the incentive of the development of the electronical communication network. Then the author analyses the four main government interventions to examine whether the decision on the role of the state was adequately well-founded.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. Mobile wireless communications have witnessed the adoption of several generations, each of them complementing and improving the former. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. 4G is a collection of technologies and standards that will allow a range of ubiquitous computing and wireless communication architectures. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications from 100 Mbps, in high mobility links, to as high as 1 Gbps for low mobility users, in addition to high efficiency in the spectrum usage. On mobile wireless communications networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations, where a terrestrial infrastructure is unavailable. Thus, they must rely upon satellite coverage. Good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. This technique must adapt to the characteristics of the satellite channel and also be efficient in the use of allocated bandwidth. Satellite links are fading channels, when used by mobile users. Some measures designed to approach these fading environments make use of: (1) spatial diversity (two receive antenna configuration); (2) time diversity (channel interleaver/spreading techniques); and (3) upper layer FEC. The author proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. For this purpose, a good channel model is necessary.
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs) in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC) principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs) between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE) scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications at high data rates, in addition to high efficiency in the spectrum usage. On mobile wireless communication networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations where a terrestrial infrastructure is unavailable. The results show that good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. The dissertation proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. The issue of Cooperative Satellite Communications is solved through a new algorithm that forwards the received data from the fixed node to the mobile node. This algorithm is very efficient because it does not allow unnecessary transmissions and is based on signal to noise ratio (SNR) measures.