958 resultados para micro-CT,cone beam Ct,trabecular tissue,image segmentation,computed tomography
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^
Resumo:
Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.
Resumo:
Funding ABK was funded by a studentship from the University of Aberdeen, Institute of Medical Sciences, and the Overseas Research Students Awards Scheme Acknowledgments We are grateful to Dr J.S. Gregory for assistance with Image J and Mr K. Mackenzie for assistance with Micro-CT analysis.
Resumo:
Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.
The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.
Resumo:
Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.
The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.
Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.
An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.
The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.
Resumo:
The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.
Resumo:
Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
Purpose: To evaluate the influence of cross-sectional arc calcification on the diagnostic accuracy of computed tomography (CT) angiography compared with conventional coronary angiography for the detection of obstructive coronary artery disease (CAD). Materials and Methods: Institutional Review Board approval and written informed consent were obtained from all centers and participants for this HIPAA-compliant study. Overall, 4511 segments from 371 symptomatic patients (279 men, 92 women; median age, 61 years [interquartile range, 53-67 years]) with clinical suspicion of CAD from the CORE-64 multi-center study were included in the analysis. Two independent blinded observers evaluated the percentage of diameter stenosis and the circumferential extent of calcium (arc calcium). The accuracy of quantitative multidetector CT angiography to depict substantial (>50%) stenoses was assessed by using quantitative coronary angiography (QCA). Cross-sectional arc calcium was rated on a segment level as follows: noncalcified or mild (<90 degrees), moderate (90 degrees-180 degrees), or severe (>180 degrees) calcification. Univariable and multivariable logistic regression, receiver operation characteristic curve, and clustering methods were used for statistical analyses. Results: A total of 1099 segments had mild calcification, 503 had moderate calcification, 338 had severe calcification, and 2571 segments were noncalcified. Calcified segments were highly associated (P < .001) with disagreement between CTA and QCA in multivariable analysis after controlling for sex, age, heart rate, and image quality. The prevalence of CAD was 5.4% in noncalcified segments, 15.0% in mildly calcified segments, 27.0% in moderately calcified segments, and 43.0% in severely calcified segments. A significant difference was found in area under the receiver operating characteristic curves (noncalcified: 0.86, mildly calcified: 0.85, moderately calcified: 0.82, severely calcified: 0.81; P < .05). Conclusion: In a symptomatic patient population, segment-based coronary artery calcification significantly decreased agreement between multidetector CT angiography and QCA to detect a coronary stenosis of at least 50%.
Resumo:
Clinical applications of quantitative computed tomography (qCT) in patients with pulmonary opacifications are hindered by the radiation exposure and by the arduous manual image processing. We hypothesized that extrapolation from only ten thoracic CT sections will provide reliable information on the aeration of the entire lung. CTs of 72 patients with normal and 85 patients with opacified lungs were studied retrospectively. Volumes and masses of the lung and its differently aerated compartments were obtained from all CT sections. Then only the most cranial and caudal sections and a further eight evenly spaced sections between them were selected. The results from these ten sections were extrapolated to the entire lung. The agreement between both methods was assessed with Bland-Altman plots. Median (range) total lung volume and mass were 3,738 (1,311-6,768) ml and 957 (545-3,019) g, the corresponding bias (limits of agreement) were 26 (-42 to 95) ml and 8 (-21 to 38) g, respectively. The median volumes (range) of differently aerated compartments (percentage of total lung volume) were 1 (0-54)% for the nonaerated, 5 (1-44)% for the poorly aerated, 85 (28-98)% for the normally aerated, and 4 (0-48)% for the hyperaerated subvolume. The agreement between the extrapolated results and those from all CT sections was excellent. All bias values were below 1% of the total lung volume or mass, the limits of agreement never exceeded +/- 2%. The extrapolation method can reduce radiation exposure and shorten the time required for qCT analysis of lung aeration.
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
Resumo:
Introdução – Numa era em que os tratamentos de Radioterapia Externa (RTE) exigem cada vez mais precisão, a utilização de imagem médica permitirá medir, quantificar e avaliar o impacto do erro provocado pela execução do tratamento ou pelos movimentos dos órgãos. Objetivo – Analisar os dados existentes na literatura acerca de desvios de posicionamento (DP) em patologias de cabeça e pescoço (CP) e próstata, medidos com Cone Beam Computed Tomography (CBCT) ou Electronic Portal Image Device (EPID). Metodologia – Para esta revisão da literatura foram pesquisados artigos recorrendo às bases de dados MEDLINE/PubMed e b-on. Foram incluídos artigos que reportassem DP em patologias CP e próstata medidos através de CBCT e EPID. Seguidamente foram aplicados critérios de validação, que permitiram a seleção dos estudos. Resultados – Após a análise de 35 artigos foram incluídos 13 estudos e validados 9 estudos. Para tumores CP, a média (μ) dos DP encontra-se entre 0,0 e 1,2mm, com um desvio padrão (σ) máximo de 1,3mm. Para patologias de próstata observa-se μDP compreendido entre 0,0 e 7,1mm, com σ máximo de 7,5mm. Discussão/Conclusão – Os DP em patologias CP são atribuídos, maioritariamente, aos efeitos secundários da RTE, como mucosite e dor, que afetam a deglutição e conduzem ao emagrecimento, contribuindo para a instabilidade da posição do doente durante o tratamento, aumentando as incertezas de posicionamento. Os movimentos da próstata devem-se principalmente às variações de preenchimento vesical, retal e gás intestinal. O desconhecimento dos DP afeta negativamente a precisão da RTE. É importante detetá-los e quantificá-los para calcular margens adequadas e a magnitude dos erros, aumentando a precisão da administração de RTE, incluindo o aumento da segurança do doente. - ABSTRACT - Background and Purpose – In an era where precision is an increasing necessity in external radiotherapy (RT), modern medical imaging techniques provide means for measuring, quantifying and evaluating the impact of treatment execution and movement error. The aim of this paper is to review the current literature on the quantification of setup deviations (SD) in patients with head and neck (H&N) or prostate tumors, using Cone Beam Computed Tomography (CBCT) or Electronic Portal Image Device (EPID). Methods – According to the study protocol, MEDLINE/PubMed and b-on databases were searched for trials, which were analyzed using selection criteria based on the quality of the articles. Results – After assessment of 35 papers, 13 studies were included in this analysis and nine were authenticated (6 for prostate and 3 for H&N tumors). The SD in the treatment of H&N cancer patients is in the interval of 0.1 to 1.2mm, whereas in prostate cancer this interval is 0.0 to 7.1mm. Discussion – The reproducibility of patient positioning is the biggest barrier for higher precision in RT, which is affected by geometrical uncertainty, positioning errors and inter or intra-fraction organ movement. There are random and systematic errors associated to patient positioning, introduced since the treatment planning phase or through physiological organ movement. Conclusion – The H&N SD are mostly assigned to the Radiotherapy adverse effects, like mucositis and pain, which affect swallowing and decrease secretions, contributing for the instability of patient positioning during RT treatment and increasing positioning uncertainties. Prostate motion is mainly related to the variation in bladder and rectal filling. Ignoring SD affects negatively the accuracy of RT. Therefore, detection and quantification of SD is crucial in order to calculate appropriate margins, the magnitude of error and to improve accuracy in RTE and patient safety.
Resumo:
Mestrado em Radioterapia.