868 resultados para metais pesados
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Heavy metals are found naturally in soils at low concentrations, but their content may be increased by human activity, making them one of the barriers in management of tropical soils. These chemical elements can be found in the composition of organic and inorganic fertilizers, insecticides, fungicides, mine tailings, and urban waste, and may cause serious damage to the environment and human health. Thus, adsorption studies are essential in assessing the behavior of heavy metals in the soil. The objective of this study was to evaluate the influence of soil chemical, particle size, and mineralogical properties on adsorption of cadmium (Cd), evaluated by Langmuir and Freundlich models, in Latossolos (Oxisols) with or without human activity. Soil samples were collected from the surface layer, 0.00-0.20 m, and chemical, particle size, and mineralogical analyzes were performed. In the adsorption study, concentrations of 0, 5, 25, 50, 100, 200, 300, and 400 mu g L-1 of Cd were used in the form of Cd(NO3)(2). The empirical mathematical models of Langmuir and Freundlich were used for construction of adsorption isotherms. Data were analyzed by means of multivariate statistical techniques, Cluster Analysis and Principal Component Analysis. The data from the adsorption experiment showed a good fit to the Langmuir and Freundlich models. Soils with a lower goethite/hematite ratio and greater cation exchange capacity and pH, showed higher maximum adsorption capacity of Cd.
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application of industrial and municipal waste in the soil may be recommended by your corrective and fertilizer value, giving the great potential for agricultural reuse, improves physical, chemical and biological soil properties and helps to reduce the consumption of fertilizers and correctives, without contamination by heavy metals. This study aimed to evaluate the absorption of nutrients and potentially toxic elements, and their effect on the development of soybean (Glycine max (L.) Merrill) grown under No-Tillage system (NT). The work was developed in the field, at the Experimental Farm Lageado - FCA / UNESP, Botucatu (SP) in an Oxisol under tropical climate of altitude. The experimental design was randomized blocks, factorial 4x4+1, with four replications. The treatments consisted of four residues: two sewage sludge, one centrifuged and treated with quicklime (LC) and a biodigester (LB) and two industrial wastes: steel slag (E) and lime mud (Lcal) , applied in dosages of 0, 2, 4 and 8 Mg ha-1. The surface application of LC, LB, Lcal and E residues in soil under NT favored the development of soybean, with no heavy metal contamination, given the current legislation.
Resumo:
Importance of silicon fertilization is related to the benefits that silicon is able to promote tolerance to heavy metals, reduce the incidence of pests and diseases, increased productivity, drought tolerance, among others. The objective of this study was to evaluate the phyllosilicates effect on biomass formation, nutrients and silicon on the early stages of corn plants compared to wollastonite. Experiment was installed and conducted in a greenhouse located at the Universidade Estadual Paulista, UNESP, in Registro, SP. Consisting of 10 treatments established in a randomized block design in scheme factorial (2 x 5), with five replications. First factor corresponds to the two types of soil (Oxisol and Ultisol) and the second factor, five treatments (control, 0 kg ha-1 Si; wollastonite W13, 13 kg ha-1 Si; wollastonite W26, 26 kg ha-1 Si; phyllosilicates F13, 13 kg ha-1 Si; phyllosilicates F26, 26 kg ha-1 Si). In Ultisol, phyllosilicates increased production of fresh, dry biomass and silicon content in shoots of corn compared to treatment with wollastonite and control. Highest Si content compared to control (6.2 g kg-1) was obtained with 13 kg ha-1 Si of phyllosilicates (9.8 g kg-1). The greatest accumulation mass and Si in plants by applying phyllosilicates were observed in Ultisol, although this display Si content higher than Oxisol.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)