827 resultados para metabolic coding
Resumo:
Diabet. Med. 28, 539-542 (2011) ABSTRACT: Aims Achievement of good metabolic control in Type 1 diabetes is a difficult task in routine diabetes care. Education-based flexible intensified insulin therapy has the potential to meet the therapeutic targets while limiting the risk for severe hypoglycaemia. We evaluated the metabolic control and the rate of severe hypoglycaemia in real-life clinical practice in a centre using flexible intensified insulin therapy as standard of care since 1990. Methods Patients followed for Type 1 diabetes (n = 206) or those with other causes of absolute insulin deficiency (n = 17) in our outpatient clinic were analysed in a cross-sectional study. Mean age (± standard deviation) was 48.9 ± 15.7 years, with diabetes duration of 21.4 ± 14.4 years. Outcome measures were HbA(1c) and frequency of severe hypoglycaemia. Results Median HbA(1c) was 7.1% (54 mmol/mol) [interquartile range 6.6-7.8 (51-62 mmol/mol)]; a good or acceptable metabolic control with HbA(1c) < 7.0% (53 mmol/mol) or 7.5% (58 mmol/mol) was reached in 43.5 and 64.6% of the patients, respectively. The frequency of severe hypoglycaemic episodes was 15 per 100 patient years: 72.3% of the patients did not experience any such episodes during the past 5 years. Conclusions Good or acceptable metabolic control is achievable in the majority of patients with Type 1 diabetes or other causes of absolute insulin deficiency in routine diabetes care while limiting the risk for severe hypoglycaemia.
Resumo:
PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Resumo:
Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
Resumo:
Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare.
Resumo:
Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.
Resumo:
BACKGROUND: Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges.METHODS: Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities.RESULTS: For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven.CONCLUSIONS: Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system.
Resumo:
Parasites use resources from their hosts, which can indirectly affect a number of host functions because of trade-offs in resource allocation. In order to get a comprehensive view of the costs imposed by blood sucking parasites to their hosts, it is important to monitor multiple components of the development and physiology of parasitized hosts over long time periods. The effect of infestation by fleas on body mass, body length growth, haematocrit, resistance to oxidative stress, resting metabolic rate and humoral immune response were experimentally evaluated. During a 3-month period, male common voles, Microtus arvalis, were either parasitized by rat fleas (Nosopsyllus fasciatus), which are naturally occurring generalist ectoparasites of voles, or reared without fleas. Then voles were challenged twice by injecting Keyhole Limpet Haemocyanin (KLH) to assess whether the presence of fleas affects the ability of voles to produce antibodies against a novel antigen. During the immune challenge we measured the evolution of body mass, haematocrit, resistance to oxidative stress and antibody production. Flea infestation negatively influenced the growth of voles. Moreover, parasitized voles had reduced haematocrit, higher resting metabolic rate and lower production of antibodies against the KLH. Resistance to oxidative stress was not influenced by the presence of fleas. During the immune challenge with KLH, body mass decreased in both groups, while the resistance to oxidative stress remained stable. In contrast, the haematocrit decreased only in parasitized voles. Our experiment shows that infestation by a haematophageous parasite negatively affects multiple traits like growth, energy consumption and immune response. Fleas may severely reduce the survival probability and reproductive success of their host in natural conditions.
Resumo:
Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.
Resumo:
We examined in vivo the influence of cytochrome P4503A4 (CYP3A4) activity, measured by the 30 min plasma 1'OH-midazolam/midazolam ratio after oral administration of 7.5 mg midazolam, on the methadone steady-state trough plasma concentrations in a group of 32 patients in methadone maintenance treatment. Patients were grouped as receiving 'low' (up to 99 mg/day, n = 10), 'high' (100-199 mg/day, n = 11) and 'very high' (> or = 200 mg/day, n = 11) doses of methadone, and the CYP3A4 metabolic activity was compared between the three groups. (S)-methadone and (R,S)-methadone, but not (R)-methadone, concentrations to dose ratios significantly correlated with the midazolam ratios (r(2) = -0.17, P = 0.018; r(2) = -0.14, P = 0.032; r(2) = -0.10, P = 0.083, respectively), with a 76% higher CYP3A4 activity in the very high-dose group as compared with the low-dose group. Significant differences in the CYP3A4 activity were calculated between the three groups (P = 0.0036), and group-to-group comparisons, using the Bonferroni correction, showed a significant difference between the low-dose and the very high-dose group (P = 0.0039), between the high-dose and the very high-dose group (P = 0.0064), but not between the low-dose and the high-dose group (P = 0.070). The higher CYP3A4 activity measured in patients receiving very high methadone doses could contribute to the need for higher doses in some patients, due to an increased metabolic clearance. This, however, must be confirmed by a prospective study.
Resumo:
Genetic Epidemiology of Metabolic Syndrome is a multinational, family-based study to explore the genetic basis of the metabolic syndrome. Atherogenic dyslipidemia (defined as low plasma high-density lipoprotein cholesterol with elevated triglycerides (<25th and >75th percentile for age, gender, and country, respectively) identified affected subjects for the metabolic syndrome. This report examines the frequency at which atherogenic dyslipidemia predicts the metabolic syndrome of the National Cholesterol Education Program Adult Treatment Panel III (ATP-III). One thousand four hundred thirty-six (854 men/582 women) affected patients by our criteria were compared with 1,672 (737 men/935 women) unaffected persons. Affected patients had more hypertension, obesity, and hyperglycemia, and they met a higher number of ATP-III criteria (3.2 +/- 1.1 SD vs 1.3 +/- 1.1 SD, p <0.001). Overall, 76% of affected persons also qualified for the ATP-III definition (Cohen's kappa 0.61, 95% confidence interval 0.59 to 0.64), similar to a separate group of 464 sporadic, unrelated cases (75%). Concordance increased from 41% to 82% and 88% for ages < or =35, 36 to 55, and > or =55 years, respectively. Affected status was also independently associated with waist circumference (p <0.001) and fasting glucose (p <0.001) but not systolic blood pressure (p = 0.43). Thus, the lipid-based criteria used to define affection status in this study substantially parallels the ATP-III definition of metabolic syndrome in subjects aged >35 years. In subjects aged <35 years, atherogenic dyslipidemia frequently occurs in the absence of other metabolic syndrome risk factors.
Resumo:
Atherogenic dyslipidemia, manifest by low HDL-cholesterol and high TG levels, is an important component of ATP-III defined metabolic syndrome. Here, we dissected the phenotypic and genetic architecture of these traits by assessing their relationships with other metabolically relevant measures, including plasma adipo-cytokines, highly sensitive C-reactive protein (hsCRP) and LDL particle size, in a large family data set (n=2800) and in an independent set of dyslipidemic cases (n=716) and normolipidemic controls (n=1073). We explored the relationships among these phenotypes using variable clustering and then estimated their genetic heritabilities and cross-trait correlations. In families, four clusters explained 61% of the total variance, with one adiposity-related cluster (including hsCRP), one BP-related cluster, and two lipid-related clusters (HDL-C, TG, adiponectin and LDL particle size; apoB and non-HDL-C). A similar structure was observed in dyslipidemic cases and normolipidemic controls. The genetic correlations in the families largely paralleled the phenotype clustering results, suggesting that common genes having pleiotropic effects contributed to the correlations observed. In summary, our analyses support a model of metabolic syndrome with two major components, body fat and lipids, each with two subcomponents, and quantifies their degree of overlap with each other and with metabolic-syndrome related measures (adipokines, LDL particle size and hsCRP).
Resumo:
Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.
Resumo:
Starting from a biologically active recombinant DNA clone of exogenous unintegrated GR mouse mammary tumor virus, we have generated three subclones of PstI fragments of 1.45, 1.1, and 2.0 kb in the plasmid vector PBR322. The nucleotide sequence has been determined for the clone of 1.45 kb which includes almost the complete region of the long terminal repeat (LTR) plus an adjacent stretch of unique sequence DNA. A short region of the 2.0 kb clone, containing the beginning of the LTR, has also been sequenced. Starting with the A of an initiation codon outside the LTR, we detected an open reading frame of 960 nucleotides, potentially coding for a protein of 320 amino acids (36K). Two hundred nucleotides downstream from the termination codon, and approximately 25 nucleotides upstream from the presumptive initiation site of viral RNA synthesis, we found a promoter-like sequence. The sequence AGTAAA was detected approximately 15-20 nucleotides upstream from the 3' end of virion RNA and probably serves as a polyadenylation signal. The 1.45 kb PstI fragment has been transfected into Ltk- cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. The virus-specific RNA synthesis detected in a Tk+ cell clone was strongly stimulated by the addition of dexamethasone.