944 resultados para maximum likelihood method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple model is proposed, using the method of maximum likelihood to estimate malformation frequencies in racial groups based on data obtained from hospital services. This model uses the proportions of racial admixture, and the observed malformation frequency. It was applied to two defects: postaxial polydactyly and cleft lip, the frequencies of which are recognizedly heterogeneous among racial groups. The frequencies estimated in each racial group were those expected for these malformations, which proves the applicability of the method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Affiliation: Département de Biochimie, Faculté de médecine, Université de Montréal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les données manquantes sont fréquentes dans les enquêtes et peuvent entraîner d’importantes erreurs d’estimation de paramètres. Ce mémoire méthodologique en sociologie porte sur l’influence des données manquantes sur l’estimation de l’effet d’un programme de prévention. Les deux premières sections exposent les possibilités de biais engendrées par les données manquantes et présentent les approches théoriques permettant de les décrire. La troisième section porte sur les méthodes de traitement des données manquantes. Les méthodes classiques sont décrites ainsi que trois méthodes récentes. La quatrième section contient une présentation de l’Enquête longitudinale et expérimentale de Montréal (ELEM) et une description des données utilisées. La cinquième expose les analyses effectuées, elle contient : la méthode d’analyse de l’effet d’une intervention à partir de données longitudinales, une description approfondie des données manquantes de l’ELEM ainsi qu’un diagnostic des schémas et du mécanisme. La sixième section contient les résultats de l’estimation de l’effet du programme selon différents postulats concernant le mécanisme des données manquantes et selon quatre méthodes : l’analyse des cas complets, le maximum de vraisemblance, la pondération et l’imputation multiple. Ils indiquent (I) que le postulat sur le type de mécanisme MAR des données manquantes semble influencer l’estimation de l’effet du programme et que (II) les estimations obtenues par différentes méthodes d’estimation mènent à des conclusions similaires sur l’effet de l’intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le développement d’un médicament est non seulement complexe mais les retours sur investissment ne sont pas toujours ceux voulus ou anticipés. Plusieurs médicaments échouent encore en Phase III même avec les progrès technologiques réalisés au niveau de plusieurs aspects du développement du médicament. Ceci se traduit en un nombre décroissant de médicaments qui sont commercialisés. Il faut donc améliorer le processus traditionnel de développement des médicaments afin de faciliter la disponibilité de nouveaux produits aux patients qui en ont besoin. Le but de cette recherche était d’explorer et de proposer des changements au processus de développement du médicament en utilisant les principes de la modélisation avancée et des simulations d’essais cliniques. Dans le premier volet de cette recherche, de nouveaux algorithmes disponibles dans le logiciel ADAPT 5® ont été comparés avec d’autres algorithmes déjà disponibles afin de déterminer leurs avantages et leurs faiblesses. Les deux nouveaux algorithmes vérifiés sont l’itératif à deux étapes (ITS) et le maximum de vraisemblance avec maximisation de l’espérance (MLEM). Les résultats de nos recherche ont démontré que MLEM était supérieur à ITS. La méthode MLEM était comparable à l’algorithme d’estimation conditionnelle de premier ordre (FOCE) disponible dans le logiciel NONMEM® avec moins de problèmes de rétrécissement pour les estimés de variances. Donc, ces nouveaux algorithmes ont été utilisés pour la recherche présentée dans cette thèse. Durant le processus de développement d’un médicament, afin que les paramètres pharmacocinétiques calculés de façon noncompartimentale soient adéquats, il faut que la demi-vie terminale soit bien établie. Des études pharmacocinétiques bien conçues et bien analysées sont essentielles durant le développement des médicaments surtout pour les soumissions de produits génériques et supergénériques (une formulation dont l'ingrédient actif est le même que celui du médicament de marque, mais dont le profil de libération du médicament est différent de celui-ci) car elles sont souvent les seules études essentielles nécessaires afin de décider si un produit peut être commercialisé ou non. Donc, le deuxième volet de la recherche visait à évaluer si les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte pour un individu pouvaient avoir une incidence sur les conclusions d’une étude de bioéquivalence et s’ils devaient être soustraits d’analyses statistiques. Les résultats ont démontré que les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte influençaient de façon négative les résultats si ceux-ci étaient maintenus dans l’analyse de variance. Donc, le paramètre de surface sous la courbe à l’infini pour ces sujets devrait être enlevé de l’analyse statistique et des directives à cet effet sont nécessaires a priori. Les études finales de pharmacocinétique nécessaires dans le cadre du développement d’un médicament devraient donc suivre cette recommandation afin que les bonnes décisions soient prises sur un produit. Ces informations ont été utilisées dans le cadre des simulations d’essais cliniques qui ont été réalisées durant la recherche présentée dans cette thèse afin de s’assurer d’obtenir les conclusions les plus probables. Dans le dernier volet de cette thèse, des simulations d’essais cliniques ont amélioré le processus du développement clinique d’un médicament. Les résultats d’une étude clinique pilote pour un supergénérique en voie de développement semblaient très encourageants. Cependant, certaines questions ont été soulevées par rapport aux résultats et il fallait déterminer si le produit test et référence seraient équivalents lors des études finales entreprises à jeun et en mangeant, et ce, après une dose unique et des doses répétées. Des simulations d’essais cliniques ont été entreprises pour résoudre certaines questions soulevées par l’étude pilote et ces simulations suggéraient que la nouvelle formulation ne rencontrerait pas les critères d’équivalence lors des études finales. Ces simulations ont aussi aidé à déterminer quelles modifications à la nouvelle formulation étaient nécessaires afin d’améliorer les chances de rencontrer les critères d’équivalence. Cette recherche a apporté des solutions afin d’améliorer différents aspects du processus du développement d’un médicament. Particulièrement, les simulations d’essais cliniques ont réduit le nombre d’études nécessaires pour le développement du supergénérique, le nombre de sujets exposés inutilement au médicament, et les coûts de développement. Enfin, elles nous ont permis d’établir de nouveaux critères d’exclusion pour des analyses statistiques de bioéquivalence. La recherche présentée dans cette thèse est de suggérer des améliorations au processus du développement d’un médicament en évaluant de nouveaux algorithmes pour des analyses compartimentales, en établissant des critères d’exclusion de paramètres pharmacocinétiques (PK) pour certaines analyses et en démontrant comment les simulations d’essais cliniques sont utiles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plusieurs études à grande échelle ont identifié la modification ou la perte d’habitats comme menace principale à la conservation des communautés de poissons d’eau douce. Au Canada, « aucune perte nette dans la capacité productive des habitats » (NNL) est le principe directeur de la politique de gestion des habitats du ministère des Pêches et Océans. Le respect du NNL implique l’avancement des connaissances au niveau des relations entre les poissons et leurs habitats, de même que des outils pour quantifier l’impact de la modification des habitats sur les poissons. Les modèles d’utilisation de l’habitat des poissons (FHUM) sont des outils qui permettent d’améliorer nos connaissances des relations poissons – habitat, de prédire la distribution des espèces, mais aussi leurs densités, biomasses ou abondances, sur la base des caractéristiques de l’environnement. L’objectif général de mon mémoire est d’améliorer la performance des FHUM pour les rivières des basses Laurentides, en suggérant des perfectionnements au niveau de 2 aspects cruciaux de l’élaboration de tels modèles : la description précise de la communauté de poissons et l’utilisation de modèles statistiques efficaces. Dans un premier chapitre, j’évalue la performance relative de la pêcheuse électrique et de l’échantillonnage en visuel (plongée de surface) pour estimer les abondances des combinaisons d’espèces et de classes de taille des poissons en rivière. J’évalue aussi l’effet des conditions environnementales sur les différences potentielles entre les communautés observées par ces 2 méthodes d’échantillonnage. Pour ce faire, 10 sections de rivière de 20 m de longueur ont été échantillonnées à l’aide de ces 2 méthodes alors qu’elles étaient fermées par des filets de blocage. 3 plongeurs performèrent l’échantillonnage en visuel en se déplaçant de l’aval vers l’amont des sections, tout en dénombrant les espèces et classes de taille. Par la suite, nous avons fait 3 passages de pêcheuse électrique et les abondances furent estimées grâce à un modèle restreint de maximum de vraisemblance, basé sur la diminution des abondances observées. De plus grandes abondances de poissons furent observées en visuel qu’avec la pêcheuse électrique à tous les sites. La richesse spécifique observée en visuel était plus élevée (6/10) ou égale (4/10) à celle observée avec la pêcheuse électrique. Les différences entre les communautés de poissons observées à l’aide de ces 2 méthodes ne purent être reliées aux conditions environnementales. Les résultats de cette expérience sont contraires à ceux de toutes les études comparant ces 2 méthodes d’échantillonnage, lesquels suggèrent une supériorité de la pêcheuse électrique. Les conditions environnementales de notre expérience étaient distinctes de celles observées dans les autres études (absence d’arbres tombés dans l’eau, très peu de substrats grossiers), mais la différence la plus marquante était en terme de communauté de poissons observée (dominance des cyprinidés et des centrarchidés plutôt que des salmonidés). Je termine ce chapitre en suggérant que les caractéristiques comportementales favorisant l’évitement de la capture (formation de bancs) et facilitant l’observation en visuel (curiosité) sont responsables de la supériorité de la plongée de surface pour échantillonner les communautés dans les rivières des basses Laurentides. Dans un deuxième chapitre, je développe des FHUM pour des communautés de poissons de rivière ayant plusieurs espèces. Dans le but de simplifier la modélisation de telles communautés et d’améliorer notre compréhension des relations poissons – habitat, j’utilise les concepts de guilde écologique et de filtre environnemental pour explorer les relations entre les guildes formées sur la bases de différents types de traits (reproducteurs, taxonomiques, éco-morphologiques et alimentaires) et les conditions environnementales locales à l’échelle du méso-habitat. Les modèles d’habitats basés sur les guildes reproductrices ont clairement surpassé les autres modèles, parce que l’habitat de fraie reflète l’habitat de préférence en dehors de la période de reproduction. J’ai également utilisé l’approche inverse, c’est à dire définir des guildes d’utilisation de l’habitat et les mettre en relation avec les traits des espèces. Les traits reliés à l’alimentation des poissons ont semblés être les meilleurs pour expliquer l’appartenance aux groupes d’utilisation de l’habitat, mais le modèle utilisé ne représentait pas bien la relation entre les groupes. La validation de notre modèle basé sur les guildes reproductrices avec un jeu de données indépendant pourrait confirmer notre découverte, laquelle représente une manière prometteuse de modéliser les relations poissons – environnement dans des communautés de poissons complexes. En conclusion, mon mémoire suggère d’importantes améliorations aux FHUM pour les communautés de poissons des basses Laurentides, en suggérant de prendre en compte les caractéristiques biologiques des cours d’eau dans le choix d’une méthode d’échantillonnage, et également en utilisant une méthode prometteuse pour simplifier les FHUM de communautés de poissons complexes : les guildes reproductrices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.