918 resultados para management control system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the development of intelligent and autonomous vehicles used to perform agricultural activities is essential to improve quantity and quality of agricultural productions. Moreover, with automation techniques it is possible to reduce the usage of agrochemicals and minimize the pollution. The University of Bologna is developing an innovative system for orchard management called ORTO (Orchard Rapid Transportation System). This system involves an autonomous electric vehicle capable to perform agricultural activities inside an orchard structure. The vehicle is equipped with an implement capable to perform different tasks. The purpose of this thesis project is to control the vehicle and the implement to perform an inter-row grass mowing. This kind of task requires a synchronized motion between the traction motors and the implement motors. A motion control system has been developed to generate trajectories and manage their synchronization. Two main trajectories type have been used: a five order polynomial trajectory and a trapezoidal trajectory. These two kinds of trajectories have been chosen in order to perform a uniform grass mowing, paying a particular attention to the constrains of the system. To synchronize the motions, the electronic cams approach has been adopted. A master profile has been generated and all the trajectories have been linked to the master motion. Moreover, a safety system has been developed. The aim of this system is firstly to improve the safety during the motion, furthermore it allows to manage obstacle detection and avoidance. Using some particular techniques obstacles can be detected and recovery action can be performed to overcome the problem. Once the measured force reaches the predefined force threshold, then the vehicle stops immediately its motion. The whole project has been developed by employing Matlab and Simulink. Eventually, the software has been translated into C code and executed on the TI Lauchpad XL board.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A thermodynamic information system for diagnosis and prognosis of an existing power plant was developed. The system is based on an analytic approach that informs the current thermodynamic condition of all cycle components, as well as the improvement that can be obtained in the cycle performance by the elimination of the discovered anomalies. The effects induced by components anomalies and repairs in other components efficiency, which have proven to be one of the main drawbacks in the diagnosis and prognosis analyses, are taken into consideration owing to the use of performance curves and corrected performance curves together with the thermodynamic data collected from the distributed control system. The approach used to develop the system is explained, the system implementation in a real gas turbine cogeneration combined cycle is described and the results are discussed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems. (C) 1999 Elsevier Science Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiration is altered during different stages of the sleep-wake cycle. We review the contribution of cholinergic systems to this alteration, with particular reference to the role of muscarinic acetylcholine receptors (MAchRs) during rapid eye movement (REM) sleep. Available evidence demonstrates that MAchRs have potent excitatory effects on medullary respiratory neurones and respiratory motoneurones, and are likely to contribute to changes in central chemosensitive drive to the respiratory control system. These effects are likely to be most prominent during REM sleep, when cholinergic brainstem neurones show peak activity levels. It is possible that MAchR dysfunction is involved in sleep-disordered breathing, Such as obstructive sleep apnea. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The way professionals deal with ethical dilemmas and the decisions they make may be guided by a personal and individual ideology, but it is also strongly influenced by their professional group and society. This paper focuses in real situations as they are experienced by individuals in their day-to-day professional life. The data were collected using opened-end interviews. Respondents were asked to identify the ethical dilemmas they had been faced with during their professional life. Qualitative analysis shows that main dilemmas are about how to deal with “informal economy”, “false invoices” and “tax evasion”. This study aims to contribute to the discussion of ethical issues faced by Portuguese Chartered Account (TOC), thus promoting a large debate about the way the TOC can help to create a better society and consequently legitimating their existence as a professional organization of public interest. More than ever, understanding professionals’ behavior in their real context is essential for to build a culture conducive to the ethical development of society, and to ensure, at the same time, the desirable business sustainability. This study gives a broaden description of ethics dilemmas faced by chartered accounts and shows some inefficiency in the ethical control system made by professional bodies.