947 resultados para loss of function mutation
Resumo:
Identification of the 1p/19q allelic status in gliomas, primarily those with a major oligodendroglial component, has become an excellent molecular complement to tumor histology in order to identify those cases sensitive to chemotherapy. In addition to loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), or comparative genomic hybridization (CGH), multiplex ligation-dependent probe amplification (MLPA) has been shown to be an alternative methodology to identify deletions of those chromosome arms. We used MLPA to explore the 1p and 19q glioblastomas, and a series of 76 gliomas: 41 tumors with a major oligodendroglial component, 34 glioblastomas, and one low-grade astrocytoma. We compared the MLPA findings of the oligodendroglial cases with those previously obtained using LOH in the same samples. Thirty-eight of 41 oligodendrogliomas displayed identical findings by both LOH and MLPA, and losses at either 1p and/or 19q were identified in 12 of 35 (34%) astrocytic tumors. These findings agree with data previously reported comparing MLPA versus FISH or CGH in gliomas and suggest that MLPA can be used in the identification 1p/19q allelic deletions on these brain neoplams. (c) 2009 Elsevier Inc. All rights reserved. reserved.
Resumo:
The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rstD mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time. genesis 47:492-504, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene that encodes chorein. It is characterized by adult-onset chorea, peripheral acanthocytes, and neuropsychiatric symptoms. In the present study, we performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis, of the VPS13A gene in ChAc patients. All 73 exons and flanking regions of VPS13A were sequenced in 35 patients diagnosed with ChAc. To detect CNVs, we also performed real-time quantitative PCR and long-range PCR analyses for the VPS13A gene on patients in whom only a single heterozygous mutation was detected. We identified 36 pathogenic mutations, 20 of which were previously unreported, including two novel CNVs. In addition, we investigated the expression of chorein in 16 patients by Western blotting of erythrocyte ghosts. This demonstrated the complete absence of chorein in patients with pathogenic mutations. This comprehensive screen provides an accurate and useful method for the molecular diagnosis of ChAc. (C) 2011 Wiley-Liss, Inc.
Resumo:
The tissue microarray (TMA) technique allows multiple tissue samples in a single block. Commercial adhesive tape is used to avoid the loss of tissue samples during the immunostaining process. Few reports exist in the literature comparing the use of these adhesive tapes to other adhesive techniques. The objective of this study was to compare loss of sections adhered to slides using commercial adhesive tapes versus using silanized only slides. TMA was constructed with varying tissues using a fixed-base device (Beecher Instruments), placing 108 cylinders of 1 mm diameter in duplicate, spaced 1.2 mm apart. Section of 4 mu m were cut from the TMA block and adhered to 30 silanized slides and 30 commercial glass slides using adhesive tape, according to manufacturer`s recommendations. Vimentin immunoexpression was evaluated by immunohistochemistry. Antigenic recovery was realized in citrate buffer using a microwave oven. Cylinder loss in the immunohistochemical process was quantified and expressed as: total (>80%), almost complete (75-79%), or partial (50-74%). The commercial adhesive tape group presented lesser total loss (1.1 versus 6.4%), almost complete loss (2.2 versus 3.5%), and partial loss (2.1 versus 3.8%) than the silanized slide group (ANOVA, P < 0.05). The sum of total and almost complete losses in the silanized slide group was 9.9%, greater than the losses in slides using commercial adhesive tapes (3.3%) and less than reported and considered acceptable in the literature (10-30%). In conclusion, the use of silanized only slides presents very satisfactory results, requires less training, and reduces costs significantly, thus justifying their use in research.
Resumo:
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Resumo:
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or beta-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Me lanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The number of breeds of domesticated animals, especially livestock, have declined rapidly. The proximate causes and processes involved in loss of breeds are outlined. The path-dependent effect and Swanson's dominance-effect are discussed in relation to breed selection. While these help to explain genetic erosion, they need to be supplemented to provide a further explanation of biodiversity loss. It is shown that the extension of markets and economic globalisation have contributed significantly to genetic loss of breeds. In addition, the decoupling of animal husbandry from surrounding natural environmental conditions is further eroding the stock of genetic resources, particularly industrialised intensive animal husbandry. Recent trends in animal husbandry raise very serious sustainability issues, apart from animal welfare concerns.
Resumo:
Objective. TGIF1 homeobox gene involvement in oral cancer has not yet been investigated. This study analyzed the expression of TGIF1 transcripts and protein in oral squamous cell carcinoma (OSCC). Study design. Snap-frozen samples from 16 patients were taken from both OSCC and nontumoral adjacent epithelium (NT) for in situ hybridization (ISH). Forty-six paraffin-embedded samples of OSCC were submitted to immunohistochemistry (IHC). A descriptive analysis of the transcript signal detection was accomplished, and TGIF1 immunoexpression was carried out considering protein levels, localization, and cellular differentiation. Results. ISH reactions showed TGIF1 transcripts with a signal that was frequently intense in NT, and generally weak in OSCC, and that had stronger transcript signal in well-differentiated areas of OSCC when compared with poorly differentiated ones. IHC reactions had poorly differentiated cases associated with TGIF1 protein expression in both the nucleus and cytoplasm (P = .05, Fisher test). Conclusions. TGIF1 gain or loss of function might possibly play a role in oral cancer cell differentiation. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 218-224)
Resumo:
Background Prolonged exposure of the lip to sunlight may cause actinic cheilitis (AC) and squamous cell carcinoma (SCC). Maspin is a serpin with tumor suppressor functions. This work analyzed the presence and distribution of maspin in AC and lip SCC. Methods Sections from 36 cases diagnosed as AC (18 cases with mild epithelial dysplasia, 11 with moderate and 7 with severe), 18 cases diagnosed as lip SCC and 7 specimens containing normal lip vermillion epithelium were submitted for immunohistochemical analysis to detect maspin. Results All AC cases with mild and two cases with moderate dysplasia were scored 3. The remaining nine cases with moderate dysplasia were identified as score 2, whereas all cases with severe dysplasia were scored 1. Positive staining for maspin decreased from the basal layer to the surface. Among the 18 lip SCCs studied, 15 cases showed abundant staining for maspin. Epithelium adjacent to the SCCs also showed intense positive staining in all cells. Conclusions Our results suggest that the loss of maspin expression occurs from the basal layer to the surface. Lip SCCs related to solar radiation show an intense presence of maspin protein in almost all tumor cells as well as the neighboring epithelium. Fontes A, Sousa SM, Santos E, Martins MT. The severity of epithelial dysplasia is associated with loss of maspin expression in actinic cheilitis.
Resumo:
Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGF beta1 and TGF beta RII act as a functional unit in the TGF beta growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGF beta RII gene, but none in IGFRII or TGF beta1. An association was found between TGF beta RII mutations and histology, with 2 out of 3 clear cell carcinomas having TGF beta RII mutations. This data supports other evidence from mutational analysis of the PTEN and beta -catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. (C) 2001 Cancer Research Campaign.
Resumo:
While mutations of CDKN2A are associated with melanoma predisposition, the precise role of its gene product p16 in the development of sporadic melanoma is less clearly understood. We sought to determine the prevalence of p16 expression using immunohistochemical analysis in a population-based sample of melanoma tumours, and also to identify histological, phenotypic and environmental factors associated with the presence or absence of p16 expression. We conducted face-to-face interviews with 108 patients newly diagnosed with melanoma to ascertain their history of sun exposure, and recorded various phenotypic parameters. Paraffin sections of tumours from these patients were stained with an anti-p16 monoclonal antibody following antigen retrieval. Overall, 52 (48%) tumours expressed p16; nodular melanomas had significantly lower levels of p16 immunoreactivity than superficial spreading melanomas (P = 0.015). While no association was found between p16 expression and host phenotype, loss of p16 staining was associated with thicker lesions (p = 0.084) and a high mitotic index (P = 0.013). Taken together, these findings are consistent with loss of p16 being a late event in the progression of sporadic primary melanomas, being associated with tumours of a more aggressive nature. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Expression of the mRNAs encoding the astrocytic (EAAT1, EAAT2) and neuronal (EAAT3, EAAT4) excitatory amino acid transporters and the AMPA-type glutamate receptor subunits GluR2 and GluR3 was investigated in postmortem cerebellar extracts from a patient with olivopontocerebellar atrophy (OPCA) and in material from three age-matched controls. Decreased expression in the steady state level of EAAT4 mRNA in the OPCA sample was correlated with the selective loss of Purkinje cells. Neuropathological evaluation revealed reactive gliosis and concomitantly increased expression of the mRNA encoding astrocytic glial fibrillary acidic protein (GFAP). Expression of the mRNAs encoding the AMPA receptor subunits GluR2 and GluR3 subunits was found to be decreased in OPCA suggesting that excitotoxic mechanism could play a role in the pathogenesis of the selective neuronal cell death in this disorder.
Resumo:
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.