945 resultados para long memory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term kinetics of T cell production following highly active antiretroviral therapy (HAART) were investigated in blood and lymph node in a group of HIV-infected subjects at early stage of established infection and prospectively studied for 72 wk. Before HAART, CD4 and CD8 T cell turnover was increased. However, the total number of proliferating CD4+ T lymphocytes, i.e., CD4+Ki67+ T lymphocytes, was not significantly different in HIV-infected (n = 73) and HIV-negative (n = 15) subjects, whereas proliferating CD8+Ki67+ T lymphocytes were significantly higher in HIV-infected subjects. After HAART, the total body number of proliferating CD4+Ki67+ T lymphocytes increased over time and was associated with an increase of both naive and memory CD4+ T cells. The maximal increase (2-fold) was observed at week 36, whereas at week 72 the number of proliferating CD4+ T cells dropped to baseline levels, i.e., before HAART. The kinetics of the fraction of proliferating CD4 and CD8 T cells were significantly correlated with the changes in the total body number of these T cell subsets. These results demonstrate a direct relationship between ex vivo measures of T cell production and quantitative changes in total body T lymphocyte populations. This study provides advances in the delineation of the kinetics of T cell production in HIV infection in the presence and/or in the absence of HAART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long summer days unequivocally stimulate, and short winter days inhibit reproduction in Siberian hamsters. By contrast, intermediate-duration day lengths (12.5–14 h long) either accelerate reproductive development or initiate regression of the reproductive apparatus. Which of these outcomes transpires depends on an animal's photoperiodic history, suggesting that hamsters must encode a representation of prior photoperiods. The duration of nocturnal melatonin secretion is the endocrine representation of day length, but nothing is known about how long it takes to establish photoperiodic histories or how long they endure. Hamsters exposed for 2 or more weeks to long summer day lengths acquired a long-day photoperiodic history that determined subsequent reproductive responses to intermediate-duration day lengths and melatonin signals. The memory for long-day lengths persisted in pinealectomized hamsters for 6.5 weeks, faded significantly after 13 weeks, and was functionally absent after 20 weeks. These findings indicate that hamsters are influenced only by relatively recent day lengths and melatonin signals and ignore earlier ones that might cause them to misinterpret the salience of current day lengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory. The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-d-aspartate receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62. Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-12 plays a central role in both the induction and magnitude of a primary Th1 response. A critical question in designing vaccines for diseases requiring Th1 immunity such as Mycobacterium tuberculosis and Leishmania major is the requirements to sustain memory/effector Th1 cells in vivo. This report examines the role of IL-12 and antigen in sustaining Th1 responses sufficient for protective immunity to L. major after vaccination with LACK protein (LP) plus rIL-12 and LACK DNA. It shows that, after initial vaccination with LP plus rIL-12, supplemental boosting with either LP or rIL-12 is necessary but not sufficient to fully sustain long-term Th1 immunity. Moreover, endogenous IL-12 is also shown to be required for the induction, maintenance, and effector phase of the Th1 response after LACK DNA vaccination. Finally, IL-12 is required to sustain Th1 cells and control parasite growth in susceptible and resistant strains of mice during primary and secondary infection. Taken together, these data show that IL-12 is essential to sustain a sufficient number of memory/effector Th1 cells generated in vivo to mediate long-term protection to an intracellular pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is now clear that there are a number of different forms or aspects of learning and memory that involve different brain systems. Broadly, memory phenomena have been categorized as explicit or implicit. Thus, explicit memories for experience involve the hippocampus–medial temporal lobe system and implicit basic associative learning and memory involves the cerebellum, amygdala, and other systems. Under normal conditions, however, many of these brain–memory systems are engaged to some degree in learning situations. But each of these brain systems is learning something different about the situation. The cerebellum is necessary for classical conditioning of discrete behavioral responses (eyeblink, limb flexion) under all conditions; however, in the “trace” procedure where a period of no stimuli intervenes between the conditioned stimulus and the unconditioned stimulus the hippocampus plays a critical role. Trace conditioning appears to provide a simple model of explicit memory where analysis of brain substrates is feasible. Analysis of the role of the cerebellum in basic delay conditioning (stimuli overlap) indicates that the memories are formed and stored in the cerebellum. The phenomenon of cerebellar long-term depression is considered as a putative mechanism of memory storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical “learning rule,” devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost all theoretical and experimental studies of the mechanisms underlying learning and memory focus on synaptic efficacy and make the implicit assumption that changes in synaptic efficacy are both necessary and sufficient to account for learning and memory. However, network dynamics depends on the complex interaction between intrinsic membrane properties and synaptic strengths and time courses. Furthermore, neuronal activity itself modifies not only synaptic efficacy but also the intrinsic membrane properties of neurons. This paper presents examples demonstrating that neurons with complex temporal dynamics can provide short-term “memory” mechanisms that rely solely on intrinsic neuronal properties. Additionally, we discuss the potential role that activity may play in long-term modification of intrinsic neuronal properties. While not replacing synaptic plasticity as a powerful learning mechanism, these examples suggest that memory in networks results from an ongoing interplay between changes in synaptic efficacy and intrinsic membrane properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies show that neuronal mechanisms for learning and memory both dynamically modulate and permanently alter the representations of visual stimuli in the adult monkey cortex. Three commonly observed neuronal effects in memory-demanding tasks are repetition suppression, enhancement, and delay activity. In repetition suppression, repeated experience with the same visual stimulus leads to both short- and long-term suppression of neuronal responses in subpopulations of visual neurons. Enhancement works in an opposite fashion, in that neuronal responses are enhanced for objects with learned behavioral relevance. Delay activity is found in tasks in which animals are required to actively hold specific information “on-line” for short periods. Repetition suppression appears to be an intrinsic property of visual cortical areas such as inferior temporal cortex and is thought to be important for perceptual learning and priming. By contrast, enhancement and delay activity may depend on feedback to temporal cortex from prefrontal cortex and are thought to be important for working memory. All of these mnemonic effects on neuronal responses bias the competitive interactions that take place between stimulus representations in the cortex when there is more than one stimulus in the visual field. As a result, memory will often determine the winner of these competitions and, thus, will determine which stimulus is attended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Memory is one of the most fundamental mental processes. Neuroscientists study this process by using extremely diverse strategies. Two different approaches aimed at understanding learning and memory were introduced in this symposium. The first focuses on the roles played by synaptic plasticity, especially in long-term depression in the cerebellum in motor learning, and its regulatory mechanism. The second approach uses an elegant chick-quail transplantation system on defined brain regions to study how neural populations interact in development to form behaviorally important neural circuits and to elucidate neurobiological correlates of perceptual and motor predispositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Working memory refers to the ability of the brain to store and manipulate information over brief time periods, ranging from seconds to minutes. As opposed to long-term memory, which is critically dependent upon hippocampal processing, critical substrates for working memory are distributed in a modality-specific fashion throughout cortex. N-methyl-D-aspartate (NMDA) receptors play a crucial role in the initiation of long-term memory. Neurochemical mechanisms underlying the transient memory storage required for working memory, however, remain obscure. Auditory sensory memory, which refers to the ability of the brain to retain transient representations of the physical features (e.g., pitch) of simple auditory stimuli for periods of up to approximately 30 sec, represents one of the simplest components of the brain working memory system. Functioning of the auditory sensory memory system is indexed by the generation of a well-defined event-related potential, termed mismatch negativity (MMN). MMN can thus be used as an objective index of auditory sensory memory functioning and a probe for investigating underlying neurochemical mechanisms. Monkeys generate cortical activity in response to deviant stimuli that closely resembles human MMN. This study uses a combination of intracortical recording and pharmacological micromanipulations in awake monkeys to demonstrate that both competitive and noncompetitive NMDA antagonists block the generation of MMN without affecting prior obligatory activity in primary auditory cortex. These findings suggest that, on a neurophysiological level, MMN represents selective current flow through open, unblocked NMDA channels. Furthermore, they suggest a crucial role of cortical NMDA receptors in the assessment of stimulus familiarity/unfamiliarity, which is a key process underlying working memory performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated whether T-cell memory reflects increased precursor frequencies of specific long-lived T cells and/or a low-level immune response against some form of persistent antigen. Antivirally protective CD8+ T-cell memory was analyzed mostly in the original vaccinated host to assess the role of antigen in its maintenance. T-cell mediated resistance against reinfection was measured in the spleen and in peripheral solid organs with protocols that excluded protection by antibodies. In vivo protection was compared with detectable cytotoxic T-lymphocyte precursor frequencies determined in vitro. In the spleen, in vitro detectable cytotoxic T-lymphocyte precursor frequencies remained stable independently of antigen, conferring resistance against viral replication in the spleen during reinfection. In contrast, T-cell mediated resistance against reinfection of peripheral solid organs faded away in an antigen-dependent fashion within a few days or weeks. We show that only memory T cells persistently or freshly activated with antigen efficiently extravasate into peripheral organs, where cytotoxic T lymphocytes must be able to exert effector function immediately; both the capacity to extravasate and to rapidly exert effector function critically depend on restimulation by antigen. Our experiments document that the duration of T-cell memory protective against peripheral reinfection depended on the antigen dose used for immunization, was prolonged when additional antigen was provided, and was abrogated after removal of antigen. We conclude that T-cell mediated protective immunity against the usual peripheral routes of reinfection is antigen-dependent.