883 resultados para local-scale variation
Resumo:
Reef managers cannot fight global warming through mitigation at local scale, but they can use information on thermal patterns to plan for reserve networks that maximize the probability of persistence of their reef system. Here we assess previous methods for the design of reserves for climate change and present a new approach to prioritize areas for conservation that leverages the most desirable properties of previous approaches. The new method moves the science of reserve design for climate change a step forwards by: (1) recognizing the role of seasonal acclimation in increasing the limits of environmental tolerance of corals and ameliorating the bleaching response; (2) including information from several bleaching events, which frequency is likely to increase in the future; (3) assessing relevant variability at country scales, where most management plans are carried out. We demonstrate the method in Honduras, where a reassessment of the marine spatial plan is in progress.
Resumo:
Focus of this study is the analysis of a local hydrogeological system in the subhumid outer tropics in the western African country of Benin. The aim was to characterize, qualify and quantify the hydrogeological and hydrological properties of the approx. 30 km2 big study area and to develop a conceptual hydrogeological model. This model should provide the basis for further studies on a regional scale. The main goal was to obtain the process knowledge of the hydrogeological system and to determine the process and the quantity of the groundwater recharge in the working area. According to the objectives, a broad hydrogeological approach was chosen. In a spacious network on the local scale TDR probes, suction cups and groundwater observation bores were installed. Also in a multidisciplinary cooperation with hydrology, geography, soil science, biology, meteorology and plant nutrition sciences, instruments like discharge gauging stations, tensiometers, lysimeter, climate stations, runoff plots and erosion pins were installed in the test site for the investigation of the relevant parameters of the hydrological cycle.
Resumo:
Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
Resumo:
The paper presents the main elements of a project entitled ICT-Emissions that aims at developing a novel methodology to evaluate the impact of ICT-related measures on mobility, vehicle energy consumption and CO2 emissions of vehicle fleets at the local scale, in order to promote the wider application of the most appropriate ICT measures. The proposed methodology combines traffic and emission modelling at micro and macro scales. These will be linked with interfaces and submodules which will be specifically designed and developed. A number of sources are available to the consortium to obtain the necessary input data. Also, experimental campaigns are offered to fill in gaps of information in traffic and emission patterns. The application of the methodology will be demonstrated using commercially available software. However, the methodology is developed in such a way as to enable its implementation by a variety of emission and traffic models. Particular emphasis is given to (a) the correct estimation of driver behaviour, as a result of traffic-related ICT measures, (b) the coverage of a large number of current vehicle technologies, including ICT systems, and (c) near future technologies such as hybrid, plug-in hybrids, and electric vehicles. The innovative combination of traffic, driver, and emission models produces a versatile toolbox that can simulate the impact on energy and CO2 of infrastructure measures (traffic management, dynamic traffic signs, etc.), driver assistance systems and ecosolutions (speed/cruise control, start/stop systems, etc.) or a combination of measures (cooperative systems).The methodology is validated by application in the Turin area and its capacity is further demonstrated by application in real world conditions in Madrid and Rome.
Resumo:
This thesis aims to identify landslide risk zones in Haiti as a whole (regional scale) and Port au Prince specifically (local scale) and to evaluate how this landslide risk can affect them, especially to Port au Prince, in order to elaborate recommendations in priority zones of the city. Landslide risk priority zones are marked in order to apply land management recommendations supported in the Haitian land tenure to reduce, mitigate or delete at maximum the possible damages that these zones can suffer in the future due to landslides. These recommendations are collected in order to stakeholders decide which of them are the best options for each priority zone. Different types of maps are generated in order to locate all landslide risk zones and priority zones.
Resumo:
En esta tesis se presenta una nueva aproximación para la realización de mapas de calidad del aire, con objeto de que esta variable del medio físico pueda ser tenida en cuenta en los procesos de planificación física o territorial. La calidad del aire no se considera normalmente en estos procesos debido a su composición y a la complejidad de su comportamiento, así como a la dificultad de contar con información fiable y contrastada. Además, la variabilidad espacial y temporal de las medidas de calidad del aire hace que sea difícil su consideración territorial y exige la georeferenciación de la información. Ello implica la predicción de medidas para lugares del territorio donde no existen datos. Esta tesis desarrolla un modelo geoestadístico para la predicción de valores de calidad del aire en un territorio. El modelo propuesto se basa en la interpolación de las medidas de concentración de contaminantes registradas en las estaciones de monitorización, mediante kriging ordinario, previa homogeneización de estos datos para eliminar su carácter local. Con el proceso de eliminación del carácter local, desaparecen las tendencias de las series muestrales de datos debidas a las variaciones temporales y espaciales de la calidad del aire. La transformación de los valores de calidad del aire en cantidades independientes del lugar de muestreo, se realiza a través de parámetros de uso del suelo y de otras variables características de la escala local. Como resultado, se obtienen unos datos de entrada espacialmente homogéneos, que es un requisito fundamental para la utilización de cualquier algoritmo de interpolación, en concreto, del kriging ordinario. Después de la interpolación, se aplica una retransformación de los datos para devolver el carácter local al mapa final. Para el desarrollo del modelo, se ha elegido como área de estudio la Comunidad de Madrid, por la disponibilidad de datos reales. Estos datos, valores de calidad del aire y variables territoriales, se utilizan en dos momentos. Un momento inicial, donde se optimiza la selección de los parámetros más adecuados para la eliminación del carácter local de las medidas y se desarrolla cada una de las etapas del modelo. Y un segundo momento, en el que se aplica en su totalidad el modelo desarrollado y se contrasta su eficacia predictiva. El modelo se aplica para la estimación de los valores medios y máximos de NO2 del territorio de estudio. Con la implementación del modelo propuesto se acomete la territorialización de los datos de calidad del aire con la reducción de tres factores clave para su efectiva integración en la planificación territorial o en el proceso de toma de decisiones asociado: incertidumbre, tiempo empleado para generar la predicción y recursos (datos y costes) asociados. El modelo permite obtener una predicción de valores del contaminante objeto de análisis en unas horas, frente a los periodos de modelización o análisis requeridos por otras metodologías. Los recursos necesarios son mínimos, únicamente contar con los datos de las estaciones de monitorización del territorio que, normalmente, están disponibles en las páginas web viii institucionales de los organismos gestores de las redes de medida de la calidad del aire. Por lo que respecta a las incertidumbres de la predicción, puede decirse que los resultados del modelo propuesto en esta tesis son estadísticamente muy correctos y que los errores medios son, en general, similares o menores que los encontrados con la aplicación de las metodologías existentes. ABSTRACT This thesis presents a new approach for mapping air quality, so that this variable of physical environment can be taken into account in physical or territorial planning. Ambient air quality is not normally considered in territorial planning mainly due to the complexity of its composition and behavior and the difficulty of counting with reliable and contrasted information. In addition, the wide spatial and temporal variability of the measurements of air quality makes his territorial consideration difficult and requires georeferenced information. This involves predicting measurements in the places of the territory where there are no data. This thesis develops a geostatistical model for predicting air quality values in a territory. The proposed model is based on the interpolation of measurements of pollutants from the monitoring stations, using ordinary kriging, after a detrending or removal of the local character of sampling values process. With the detrending process, the local character of the time series of sampling data, due to temporal and spatial variations of air quality, is removed. The transformation of the air quality values into site-independent quantities is performed using land use parameters and other characteristic parameters of local scale. This detrending of the monitoring data process results in a spatial homogeneous input set which is a prerequisite for a correct use of any interpolation algorithm, particularly, ordinary kriging. After the interpolation step, a retrending or retransformation is applied in order to incorporate the local character in the final map at places where no monitoring data is available. For the development of this model, the Community of Madrid is chosen as study area, because of the availability of actual data. These data, air quality values and local parameters, are used in two moments. A starting point, to optimize the selection of the most suitable indicators for the detrending process and to develop each one of the model stages. And a second moment, to fully implement the developed model and to evaluate its predictive power. The model is applied to estimate the average and maximum values of NO2 in the study territory. With the implementation of the proposed model, the territorialization of air quality data is undertaken with the reduction in three key factors for the effective integration of this parameter in territorial planning or in the associated decision making process: uncertainty, time taken to generate the prediction and associated resources (data and costs). This model allows the prediction of pollutant values in hours, compared to the implementation time periods required for other modeling or analysis methodologies. The required resources are also minimal, only having data from monitoring stations in the territory, that are normally available on institutional websites of the authorities responsible for air quality networks control and management. With regard to the prediction uncertainties, it can be concluded that the results of the proposed model are statistically very accurate and the mean errors are generally similar to or lower than those found with the application of existing methodologies.