938 resultados para learning control
Resumo:
Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.
Resumo:
The beta-amyloid precursor protein (beta-APP), from which the beta-A4 peptide is derived, is considered to be central to the pathogenesis of Alzheimer disease (AD). Transgenic mice expressing the 751-amino acid isoform of human beta-APP (beta-APP751) have been shown to develop early AD-like histopathology with diffuse deposits of beta-A4 and aberrant tau protein expression in the brain, particularly in the hippocampus, cortex, and amygdala. We now report that beta-APP751 transgenic mice exhibit age-dependent deficits in spatial learning in a water-maze task and in spontaneous alternation in a Y maze. These deficits were mild or absent in 6-month-old transgenic mice but were severe in 12-month-old transgenic mice compared to age-matched wild-type control mice. No other behavioral abnormalities were observed. These mice therefore model the progressive learning and memory impairment that is a cardinal feature of AD. These results provide evidence for a relationship between abnormal expression of beta-APP and cognitive impairments.
Resumo:
The song system of birds consists of several neural pathways. One of these, the anterior forebrain pathway, is necessary for the acquisition but not for the production of learned song in zebra finches. It has been shown that the anterior forebrain pathway sequentially connects the following nuclei: the high vocal center, area X of lobus parolfactorius, the medial portion of the dorsolateral thalamic nucleus, the lateral magnocellular nucleus of anterior neostriatum (IMAN), and the robust nucleus of the archistriatum (RA). We now show in zebra finches (Taeniopygia guttata) that IMAN cells that project to RA also project to area X, forming a feedback loop within the anterior forebrain pathway. The axonal endings of the IMAN projection into area X form cohesive and distinct domains. Small injections of tracer in subregions of area X backfill a spatially restricted subset of cells in IMAN, that, in turn, send projections to RA that are arranged in horizontal layers, which may correspond to the functional representation of vocal tract muscles demonstrated by others. We infer from our data that there is a myotopic representation throughout the anterior forebrain pathway. In addition, we suggest that the parcellation of area X into smaller domains by the projection from IMAN highlights a functional architecture within X, which might correspond to units of motor control, to the representation of acoustic features of song, or both.
Resumo:
Este documento es un artículo inédito que ha sido aceptado para su publicación. Como un servicio a sus autores y lectores, Alternativas. Cuadernos de trabajo social proporciona online esta edición preliminar. El manuscrito puede sufrir alteraciones tras la edición y corrección de pruebas, antes de su publicación definitiva. Los posibles cambios no afectarán en ningún caso a la información contenida en esta hoja, ni a lo esencial del contenido del artículo.
Resumo:
We investigated whether children’s inhibitory control is associated with their ability to produce irregular verb forms as well as learn from corrective feedback following their use of an over-regularized form. Forty-eight 3.5 to 4.5 year old children were tested on the irregular past tense and provided with adult corrective input via models of correct use or recasts of errors following ungrammatical responses. Inhibitory control was assessed with a three-item battery of tasks that required suppressing a prepotent response in favor of a non-canonical one. Results showed that inhibitory control was predictive of children’s initial production of irregular forms and not associated with their post-feedback production of irregulars. These findings show that children’s executive functioning skills may be a rate-limiting factor on their ability to produce correct forms, but might not interact with their ability to learn from input in this domain. Findings are discussed in terms of current theories of past-tense acquisition and learning from input more broadly.
Resumo:
Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
Comunicação apresentada no CYTEF 2016/VIII Congresso Ibérico | VI Congresso Ibero-Americano de Ciências e Técnicas do Frio, 3-6 maio 2016, Coimbra, Portugal
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.
Resumo:
In response to recent technological advances and the trend toward flexible learning in education, the authors examined the factors affecting student satisfaction with flexible online learning. The authors identified 2 key student attributes of student satisfaction: (a) positive perceptions of technology in terms of ease of access and use of online flexible learning material and (b) autonomous and innovative learning styles. The authors derived measures of perceptions of technology from research on the Technology Acceptance Model and used locus of control and innovative attitude as indicators of an autonomous and innovative learning mode. First-year students undertaking an introductory management course completed surveys at the beginning (n = 248) and at the end (n = 256) of course work. The authors analyzed the data by using structural equation modeling. Results suggest that student satisfaction is influenced by positive perceptions toward technology and an autonomous learning mode.
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Theoretical analyses of air traffic complexity were carried out using the Method for the Analysis of Relational Complexity. Twenty-two air traffic controllers examined static air traffic displays and were required to detect and resolve conflicts. Objective measures of performance included conflict detection time and accuracy. Subjective perceptions of mental workload were assessed by a complexity-sorting task and subjective ratings of the difficulty of different aspects of the task. A metric quantifying the complexity of pair-wise relations among aircraft was able to account for a substantial portion of the variance in the perceived complexity and difficulty of conflict detection problems, as well as reaction time. Other variables that influenced performance included the mean minimum separation between aircraft pairs and the amount of time that aircraft spent in conflict.
Resumo:
The habituation to intense acoustic stimuli and the acquisition of differentially conditioned fear were assessed in 53 clinically anxious and 30 non-anxious control children and young adolescents. Anxious children tended to show larger electrodermal responses during habituation, but did not differ in blink startle latency or magnitude. After acquisition training, non-anxious children rated the CS + as more fear provoking and arousing than the CS- whereas the ratings of anxious children did not differ. However, anxious children rated the CS + as more fear provoking after extinction, a difference that was absent in non-anxious children. During extinction training, anxious children displayed larger blink magnitude facilitation during CS + and a trend towards larger electrodermal responses, a tendency not seen in nonanxious children. These data suggest that extinction of fear learning is retarded in anxious children. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.