928 resultados para larval forms
Resumo:
In this article we study the behavior of inertia groups for modularGalois mod l^n representations and in some cases we give a generalizationof Ribet s lowering the level result (cf. [Rib90]).
Resumo:
Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.
Resumo:
Under natural environmental conditions, blowflies utilize discrete and ephemeral feeding resources such as decaying carcasses. Competition for food on such feeding substrates is usually very severe, and only the individuals that are capable of attaining the critical larval weight for pupation will be able to survive. This critical weight is hitherto unknown for several blowfly species; therefore, the current work is aimed at obtaining such a critical value for four blowfly species of the genera Chrysomya and Lucilia, deploying two types of feeding substrate, namely, artificial diet and macerated bovine meat. On the whole, the critical weights ranged from 30 to 35 mg. The lowest larval weight which permitted pupation was 30.0 mg for Chrysomya megacephala reared on macerated bovine meat. This species was also the best adapted to pupation at low larval weights in relation to the maximum larval weight for males. Regarding the pupation of females, the best-adapted individual was a C. albiceps specimen exhibiting a critical weight that was equal to 39.20 % of the maximum value obtained. Concerning all the species and diet types, the female individuals exhibited the lowest critical weights that produced viable pupae, probably representing an evolutionary strategy that favoured the survival of females, responsible for the egg formation, contributing to the establishment of future generations. Regarding the loss (in percentage) of adult biomass in relation to the third instar larvae, the females of C. megacephala lost less weight than males in both feeding substrates. On the other hand, such a loss of weight occurred in males of C. albiceps and L. cuprina.
Resumo:
The aim of this study was to verify the viability of exclusive use of elephant grass pollen, Pennisetum purpureum (Schum), to feed larvae of the lacewing Chrysoperla externa (Hagen, 1861). The insects were kept at 24ºC and the duration and survival rate of each instar and the larval and pupal phases were recorded. The diet provided complete development of the larvae. The average duration of the first and second instars was the same (6.9 days), while the third instar lasted an average of 10.0 days and the pupal phase 13.2 days. The average survival of the larvae was above 80% for the first, second and third instars, and 70.0% and 33.3% for the larval and pupal phase, respectively. These results indicate that the exclusive use of elephant grass pollen can provide complete development of the immature stages of this predator.
Resumo:
This article starts a computational study of congruences of modular forms and modular Galoisrepresentations modulo prime powers. Algorithms are described that compute the maximum integermodulo which two monic coprime integral polynomials have a root in common in a sensethat is defined. These techniques are applied to the study of congruences of modular forms andmodular Galois representations modulo prime powers. Finally, some computational results withimplications on the (non-)liftability of modular forms modulo prime powers and possible generalisationsof level raising are presented.
Resumo:
Entre setiembre de 1984 y febrero de 1985 se determinó las concentraciones de larvas en 3 estaciones en la Bahía de Paracas. Simultáneamente se registró la temperatura superficial del agua, se calculó el índice gonadal de la Concha de Abanico y se captó semillas.
Resumo:
Bionomic data and larval density of Scarabaeidae (Pleurosticti) in sugarcane in the central region of Mato Grosso do Sul, Brazil. Phytophagous larvae of Scarabaeidae cause damage to diverse crops. Information on these pests is scarce; therefore, the objective of this study was to determine biological aspects and larval density of species occurring in an area of sugarcane. The studies were developed in Sidrolândia from April 2009 to March 2010. Scarab beetle larvae were collected in sugarcane roots every fifteen days, taken to the laboratory and reared to obtain the adults and determine biological parameters. A total of 2,656 larvae were collected, being 162 Liogenys fuscus, 120 Cyclocephala verticalis, 37 Cyclocephala forsteri, and 2337 Anomonyx sp. In January, 53.65 larvae m-2 were obtained, and the most abundant species was Anomonyx sp, representing 87.99% of the total larvae collected. From November to March, the greatest densities of Anomonyx were observed in the field. The adults of this species occurred from May to September, and egg laying from September to November. Eggs measured 1.1 x 1.7 mm, and incubation period last 15.4 days. First instar larvae were observed mainly in October; second instar larvae from November to April; and third instar from January to July. Pupae were observed from May to August. The most abundant scarab beetle, Anomonyx sp. in roots of sugarcane presents one generation per year in Sidrolândia, MS.
Resumo:
Description of the third larval instar and pupa of Geniates barbatus Kirby (Coleoptera, Scarabaeidae, Rutelinae). The last larval instar and pupa of the Neotropical Geniatini Geniates barbatus Kirby, 1819 are described and illustrated. Biological notes and a key to the third instar larvae of Neotropical Rutelinae are also provided.
Resumo:
New method for rearing Spodoptera frugiperda in laboratory shows that larval cannibalism is not obligatory. Here we show, for the first time, that larvae of the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), can be successfully reared in a cohort-based manner with virtually no cannibalism. FAW larvae were reared since the second instar to pupation in rectangular plastic containers containing 40 individuals with a surprisingly ca. 90% larval survivorship. Adult females from the cohort-based method showed fecundity similar to that already reported on literature for larvae reared individually, and fertility higher than 99%, with the advantage of combining economy of time, space and material resources. These findings suggest that the factors affecting cannibalism of FAW larvae in laboratory rearings need to be reevaluated, whilst the new technique also show potential to increase the efficiency of both small and mass FAW rearings.
Resumo:
Larval development of Physocephala (Diptera, Conopidae) in the bumble bee Bombus morio (Hymenoptera, Apidae). In the summer of 2012, a high incidence of conopid larvae was observed in a sample of female B. morio collected in remaining fragments of semidecidual forest and Cerrado, in the municipality of Sorocaba, state of São Paulo, Brazil. The larval development of conopid flies was studied, beginning at the larval instars (LO to L3) and PUP, until the emergence of the imago under laboratory conditions and inside the host. At the first instar, or LO, the microtype larvae measured less than 1 mm in length. During the transition from L1 to L3, the larvae grew in length. At L3, the larvae doubled their length (4 mm) and then started to develop both in length and width, reaching the PUP stage with 10 mm in length and 7 mm in width. The main characteristic that differentiates L3 from the early instars is the larger body size and the beginning of posterior spiracle development. The development from PUP to puparium took less than 24h. The bees died ten days after the fly oviposition, or just before full PUP development. The early development stages (egg-LO to L1) were critical for larva survival. The pupa was visible between the intersegmental sternites and, 32 days after pupation, a female imago of Physocephala sp. emerged from one bee. The puparium and the fly measured approximately 10 mm in length. In a single day of collection, up to 45% of the bumble bees collected were parasitized by conopid flies.
Resumo:
This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod), the larval development of Spodoptera eridania (Cramer, 1784) (Lepidoptera, Noctuidae) fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Btisoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein) slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.
Resumo:
The study of organisms and their resources is critical to further understanding population dynamics in space and time. Although drosophilids have been widely used as biological models, their relationship with breeding and feeding sites has received little attention. Here, we investigate drosophilids breeding in fruits in the Brazilian Savanna, in two contrasting vegetation types, throughout 16 months. Specifically, larval assemblages were compared between savannas and forests, as well as between rainy and dry seasons. The relationships between resource availability and drosophilid abundance and richness were also tested. The community (4,022 drosophilids of 23 species and 2,496 fruits of 57 plant taxa) varied widely in space and time. Drosophilid assemblages experienced a strong bottleneck during the dry season, decreasing to only 0.5% of the abundance of the rainy season. Additionally, savannas displayed lower richness and higher abundance than the forests, and were dominated by exotic species. Both differences in larval assemblages throughout the year and between savannas and gallery forests are consistent with those previously seen in adults. Although the causes of this dynamic are clearly multifactorial, resource availability (richness and abundance of rotten fruits) was a good predictor of the fly assemblage structure.
Resumo:
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.