981 resultados para ionic resistance
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.
Resumo:
Low-volume, backline applications with the benzoylphenyl urea insecticides triflumuron and diflubenzuron represent in excess of 70% of treatments for the control of sheep lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), in Australia. Reports of reduced effectiveness from 2003 and subsequent controlled treatment trials suggested the emergence of resistance to these compounds in B. ovis populations. A laboratory assay based on the measurement of moulting success in nymphs was developed and used to assess susceptibility to diflubenzuron and triflumuron in louse populations collected from sheep where a control failure had occurred. These tests confirmed the development of resistance to triflumuron and diflubenzuron in at least two instances, with estimated resistance ratios of 67-94X at LC50.
Resumo:
The diffusion coefficient, D, and the ionic mobility, μ, in the protonic conductor ammonium ferrocyanide hydrate have been determined by the isothermal transient ionic current method. D is also determined from the time dependence of the build up of potential across the samples and theretical expressions describing this build up in terms of double exponential dependence on time are obtained. The values obtained are D=3.875×10−11m2s−1 and μ=1.65×10−9 m2V−1s−1.
Resumo:
We present a low-frequency electrical noise measurement in graphene based field effect transistors. For single layer graphene (SLG), the resistance fluctuations is governed by the screening of the charge impurities by the mobile charges. However, in case of Bilayer graphene (BLG), the electrical noise is strongly connected to its band structure, and unlike single layer graphene, displays a minimum when the gap between the conduction and valence band is zero. Using double gated BLG devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene
Resumo:
Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NOx, and unburned hydrocarbons-need to be fully converted to CO2, N-2, and H2O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al2O3 or SiO2 promoted by CeO2. However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce1-xMxO2-delta and Ce1-x-yTiyMxO2-delta (M = Pt, Pd, Rh; x = 0,01-0.02, delta approximate to x, y = 0.15-0.25) oxides in fluorite structure, In these oxide catalysts, pt(2+), Pd2+, or Rh3+ ions are substituted only to the extent of 1-2% of Ce4+ ion. Lower-valent noble metal ion substitution in CeO2 creates oxygen vacancies. Reducing molecules (CO, H-2, NH3) are adsorbed onto electron-deficient noble metal ions, while oxidizing (02, NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NOx reduction (with >80% N-2 selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO2 or Ce1-xTixO2 were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the more expensive Pt and Rh metals are not necessary in exhaust catalysts. We have also grown these nanocrystalline ionic catalysts on ceramic cordierite and have reproduced the results we observed in powder material on the honeycomb catalytic converter. Oxygen in a CeO2 lattice is activated by the substitution of Ti ion, as well as noble metal ions. Because this substitution creates longer Ti-O and M-O bonds relative to the average Ce-O bond within the lattice, the materials facilitate high oxygen storage and release. The interaction among M-0/Mn+, Ce4+/Ce3+, and Ti4+/Ti3+ redox couples leads to the promoting action of CeO2, activation of lattice oxygen and high oxygen storage capacity, metal support interaction, and high rates of catalytic activity in exhaust catalysis.
Resumo:
As failure to control Rhyzopertha dominica (F.) with phosphine is a common problem in the grain-growing regions of Brazil, a study was undertaken to investigate the frequency, distribution and strength of phosphine resistance in R. dominica in Brazil. Nineteen samples of R. dominica were collected between 1991 and 2003 from central storages where phosphine fumigation had failed to control this species. Insects were cultured without selection until testing in 2005. Each sample was tested for resistance to phosphine on the basis of the response of adults to discriminating concentrations of phosphine (20 and 48 h exposures) and full dose-response assays (48 h exposure). Responses of the Brazilian R. dominica samples were compared with reference susceptible, weak-resistance and strong-resistance strains from Australia in parallel assays. All Brazilian population samples showed resistance to phosphine: five were diagnosed with weak resistance and 14 with strong resistance. Five samples showed levels of resistance similar to the reference strong-resistance strain. A representative highly resistant sample was characterised by exposing mixed-age cultures to a range of constant concentrations of phosphine for various exposure periods. Time to population extinction (TPE) and time to 99.9% suppression of population (LT99.9) values of this sample were generally similar to those of the reference strong-resistance strain. For example, at 0.1, 0.5 and 1.0 mg L-1, LT99.9 values for BR33 and the reference strong-resistance strain were respectively 21, 6.4 and 3.7 days and 17, 6.2 and 3.8 days. With both strains, doubling phosphine concentrations to 2 mg L -1 resulted in increased LT99.9 and TPE. High level and frequency of resistance in all population samples, some of which had been cultured without selection for up to 12 years, suggest little or no fitness deficit associated with phosphine resistance. The present research indicates that widespread phosphine resistance may be developing in Brazil. Fumigation practices should be monitored and resistance management plans implemented to alleviate further resistance development.
Resumo:
Sw-5 is an important disease resistance gene of tomato, providing broad resistance to Tomato spotted wilt virus (TSWV). A cleaved amplified polymorphic sequence (CAPS) marker, closely linked to the gene, has been reported. Although the Sw-5 locus has been characterised, a gene-specific marker has not been developed. This paper presents a PCR-based marker-system that consists of the co-amplification of a dominant marker representing the Sw-5 gene sequence, and the modified CAPS marker as a positive control and indicator of genotype.
Resumo:
Pratylenchus thornei and P. neglectus are two species of root-lesion nematode that cause substantial yield losses in wheat. No commercially available wheat variety has resistance to both species. A doubled-haploid population developed from a cross between the synthetic hexaploid wheat line CPI133872 and the bread wheat Janz was used to locate and tag quantitative trait loci (QTLs) associated with resistance to both P. thornei and P. neglectus. Wheat plants were inoculated with both species of nematode in independent replicated glasshouse trials repeated over 2 years. Known locations of wheat microsatellite markers were used to construct a framework map. After an initial single-marker analysis to detect marker-trait linkages, chromosome regions associated with putative QTLs were targetted with microsatellite markers to increase map density in the chromosome regions of interest. In total, 148 wheat microsatellite markers and 21 amplified fragment length polymorphism markers were mapped. The codominant microsatellite marker Xbarc183 on the distal end of chromosome 6DS was allelic for resistance to both P. thornei and P. neglectus. The QTL were designated QRlnt.lrc-6D.1 and QRlnn.lrc-6D.1, for the 2 traits, respectively. The allele inherited from CPI133872 explained 22.0-24.2% of the phenotypic variation for P. thornei resistance, and the allele inherited from Janz accounted for 11.3-14.0% of the phenotypic variation for P. neglectus resistance. Composite interval mapping identified markers that flank a second major QTL on chromosome 6DL (QRlnt.lrc-6D.2) that explained 8.3-13.4% of the phenotypic variation for P. thornei resistance. An additional major QTL associated with P. neglectus resistance was detected on chromosome 4DS (QRlnn.lrc-4D.1) and explained a further 10.3-15.4% of the phenotypic variation. The identification and tagging of nematode resistance genes with molecular markers will allow appropriate allele combinations to be selected, which will aid the successful breeding of wheat with dual nematode resistance.
Resumo:
Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.
Resumo:
Net form of net blotch (NFNB), caused by Pyrenophora teres Drechs. f. teres Smedeg., is a serious disease problem for the barley industry in Australia and other parts of the world. Three doubled haploid barley populations, Alexis/Sloop, WI2875-1/Alexis, and Arapiles/Franklin, were used to identify genes conferring adult plant resistance to NFNB in field trials. Quantitative trait loci (QTLs) identified were specific for adult plant resistance because seedlings of the parental lines were susceptible to the NFNB isolates used in this study. QTLs were identified on chromosomes 2H, 3H, 4H, and 7H in both the Alexis/Sloop and WI2875-1/Alexis populations and on chromosomes 1H, 2H, and 7H in the Arapiles/Franklin population. Using QTLNetwork, epistatic interactions were identified between loci on chromosomes 3H and 6H in the Alexis/Sloop population, between 2H and 4H in the WI2875-1/Alexis population, and between 5H and 7H in the Arapiles/Franklin population. Comparisons with earlier studies of NFNB resistance indicate the pathotype-dependent nature of many resistance QTLs and the importance of establishing an international system of pathotype nomenclature and differential testing.
Resumo:
A rapid quenching technique with a quenching rate of roughly 106°C/sec has been developed to prepare glassy samples of ABO3 type materials. Glasses of potassium lithium niobate have been prepared by this technique. These glasses have been characterized by x-ray diffraction, electron diffraction and differential scanning calorimetry techniques to assess the quality of the obtained glasses.
Resumo:
Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.
Resumo:
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced to Australia in 1995 for the control of wild rabbits. Initial outbreaks greatly reduced rabbit numbers and the virus has continued to control rabbits to varying degrees in different parts of Australia. However, recent field evidence suggests that the virus may be becoming less effective in those areas that have previously experienced repeated epizootics causing high mortality. There are also reports of rabbits returning to pre-1995 density levels, Virus and host can be expected to co-evolve. The host will develop resistance to the virus with the virus subsequently changing to overcome that resistance. It has been 12 years since the release of RHDV and it is an opportune time to examine where the dynamic currently stands between RHDV and rabbits. Laboratory challenge tests have indicated that resistance to RHDV has developed to different degrees in populations throughout Australia. In one population a low dose (1:25 dilution) of Czech strain RHDV failed to infect a single susceptible rabbit, yet infected a low to high (up to 73%) percentage across other populations tested. Different selection pressures are present in these populations and will be driving the level of resistance being seen. The mechanisms and genetics behind the development of resistance are also important as the on-going use of RHDV as a control tool in the management of rabbits relies on our understanding of factors influencing the efficacy of the virus. Understanding how resistance has developed may provide clues on how best to use the virus to circumvent these mechanisms. Similarly, it will help in managing populations that have yet to develop high levels of resistance.
Resumo:
Pratylenchus thornei is widespread throughout the wheat-growing regions in Australia and overseas and can cause yield losses of up to 70% in some intolerant cultivars. The most effective forms of management of P. thornei populations are crop rotation and plant breeding. There have been no wheat accessions identified as completely resistant to P. thornei, therefore breeding programs have used moderately resistant parents. The objective of the present research was to evaluate 274 Iranian landrace wheats for resistance to P. thornei and identify accessions with resistance superior to the current best resistance source (GS50a). Plants were grown in P. thornei inoculated soil under controlled conditions in a glasshouse pot experiment for 16 weeks. Ninety-two accessions found to be resistant or moderately so were retested in a second experiment. From combined analysis of these experiments, 34 accessions were identified as resistant with reproduction factors (final population per kg soil/initial inoculum rate per kg soil) <= 1. In total, 25 accessions were more resistant than GS50a, with AUS28470 significantly (P < 0.05) more resistant. The resistant Iranian landraces identified in the present study are a valuable untapped genetic pool offering improved levels of P. thornei resistance over current parents in Australian wheat-breeding programs.
Resumo:
The banana industry worldwide is under threat from a fungal disease known as Fusarium wilt, a disease for which there is no chemical control. Conventional breeding approaches to generate resistant banana varieties are lengthy and very difficult. As such, genetic engineering for disease resistance is considered the most viable control option. In this PhD thesis, genetically modified banana plants were generated using several different stress tolerance genes. When challenged with Fusarium wilt in glasshouse trials, some lines showed increased resistance to the disease. The promising elite lines generated in this study will now require testing in field trials.