863 resultados para in-plane strain


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Just-in-time (JIT) production systems are increasingly being seen as a vital way for manufacturing organizations to enhance their competitiveness. A number of commentators have suggested that this will simplify jobs and reduce employee well-being. This paper presents a conceptual framework for interpreting the effects of JIT and reports findings from a study of the impact of JIT on the content of workers'jobs and on job satisfaction and psychological strain. The introduction of JIT led to a reduction in control over work timing, an increase in production pressure, and a drop in job satisfaction. Contrary to claims in the literature, no changes were found in control over work methods, other aspects of cognitive demands and skill use, and in psychological strain. The study shows that JIT can be implemented without radical changes in job content or adverse impact in terms of employee strain, and the implications of these findings are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent development of using negative stiffness inclusions to achieve extreme overall stiffness and mechanical damping of composite materials reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the Voigt, Reuss, and Hashin-Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films with unusual in-plane mechanical properties. © 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fracture behaviour and plane strain fracture toughness, KIC, of four 8090-based metal-matrix composites containing 20 weight % SiC particles, 3, 6 and 23 μm in diameter, has been evaluated as a function of matrix ageing condition. Toughness values are found to be almost independent of reinforcement size. Ageing at 170°C results in a monotonic decrease in toughness with increasing strength up to the peak condition, with no subsequent recovery in toughness on overageing. However, unlike reinforced 8090, the composites are not found to be susceptible to intergranular embrittlement on overageing. The observed trends are found to be independent of reinforcement size. These findings are explained in terms of the strength, work hardening behaviour and nature and distribution of void-nucleating particles in the matrix. © 1993.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the research focus is how to entangle magnetic dipoles to control/engineer magnetic properties of different devices at a submicron/nano scale. Here, we report the generation of synthetic arrays of tunable magnetic dipoles in a nanomodulated continuous ferromagnetic film. In-plane magnetic field rotations in modulated Ni 45Fe 55 revealed various rotational symmetries of magnetic anisotropy due to dipolar interaction with a crossover from lower to higher fold as a function of modulation geometry. Additionally, the effect of aspect ratio on symmetry shows a novel phase shift of anisotropy, which could be critical to manipulate the overall magnetic properties of the patterned film. The tendency to form vortex is in fact found to be very small, which highlights that the strong coupling between metastable dipoles is more favorable than vortex formation to minimize energy in this nanomodulated structure. This has further been corroborated by the observation of step hysteresis, magnetic force microscopy images of tunable magnetic dipoles, and quantitative micromagnetic simulations. An analytical expression has been derived to estimate the overall anisotropy accurately for nanomodulated film having low magnetocrystaline anisotropy. Derived mathematical expressions based on magnetic dipolar interaction are found to be in good agreement with our results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single-phase multiferroic materials are of considerable interest for future memory and sensing applications. Thin films of Aurivillius phase Bi 7Ti3Fe3O21 and Bi6Ti 2.8Fe1.52Mn0.68O18 (possessing six and five perovskite units per half-cell, respectively) have been prepared by chemical solution deposition on c-plane sapphire. Superconducting quantum interference device magnetometry reveal Bi7Ti3Fe 3O21 to be antiferromagnetic (TN = 190 K) and weakly ferromagnetic below 35 K, however, Bi6Ti2.8Fe 1.52Mn0.68O18 gives a distinct room-temperature in-plane ferromagnetic signature (Ms = 0.74 emu/g, μ0Hc =7 mT). Microstructural analysis, coupled with the use of a statistical analysis of the data, allows us to conclude that ferromagnetism does not originate from second phase inclusions, with a confidence level of 99.5%. Piezoresponse force microscopy (PFM) demonstrates room-temperature ferroelectricity in both films, whereas PFM observations on Bi6Ti2.8Fe1.52Mn0.68O18 show Aurivillius grains undergo ferroelectric domain polarization switching induced by an applied magnetic field. Here, we show for the first time that Bi6Ti2.8Fe1.52Mn0.68O18 thin films are both ferroelectric and ferromagnetic and, demonstrate magnetic field-induced switching of ferroelectric polarization in individual Aurivillius phase grains at room temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.

This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.

Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An investigation was carried out on CLT panels made from Sitka spruce in order to establish the effect of the thickness of CLT panels on the bending stiffness and strength and the rolling shear. Bending and shear tests on 3-layer and 5-layer panels were performed with loading in the out-of-plane and in-plane directions. ‘Global’ stiffness measurements were found to correlate well with theoretical values. Based on the results, there was a general tendency that both the bending strength and rolling shear decreased with panel thickness. Mean values for rolling shear ranged from 1.0 N/mm2 to 2.0 N/mm2 .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper under- standing of exchange coupling in multiferroic nanoscale hetero- structures toward the realization of magnetoelectric devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A theory was developed to allow the separate determination of the effects of the interparticle friction and interlocking of particles on the shearing resistance and deformational behavior of granular materials. The derived parameter, angle of solid friction, is independent of the type of shear test, stress history, porosity and the level of confining pressure, and depends solely upon the nature of the particle surface. The theory was tested against published data concerning the performance of plane strain, triaxial compression and extension tests on cohesionless soils. The theory also was applied to isotropically consolidated undrained triaxial tests on three crushed limestones prepared by the authors using vibratory compaction. The authors concluded that, (1) the theory allowed the determination of solid friction between particles which was found to depend solely on the nature of the particle surface, (2) the separation of frictional and volume change components of shear strength of granular materials qualitatively corroborated the postulated mechanism of deformation (sliding and rolling of groups of particles over other similar groups with resulting dilatancy of specimen), (3) the influence of void ratio, gradation confining pressure, stress history and type of shear test on shear strength is reflected in values of the omega parameter, and (4) calculation of the coefficient of solid friction allows the establishment of the lower limit of the shear strength of a granular material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shearing is a fast and inexpensive method to cut sheet metal that has been used since the beginning of the industrialism. Consequently, published experimental studies of shearing can be found from over a century back in time. Recent studies, however, are due to the availability of low cost digital computation power, mostly based on finite element simulations that guarantees quick results. Still, for validation of models and simulations, accurate experimental data is a requisite. When applicable, 2D models are in general desirable over 3D models because of advantages like low computation time and easy model formulation. Shearing of sheet metal with parallel tools is successfully modelled in 2D with a plane strain approximation, but with angled tools the approximation is less obvious. Therefore, plane strain approximations for shearing with angled tools were evaluated by shear experiments of high accuracy. Tool angle, tool clearance, and clamping of the sheet were varied in the experiments. The results showed that the measured forces in shearing with angled tools can be approximately calculated using force measurements from shearing with parallel tools. Shearing energy was introduced as a quantifiable measure of suitable tool clearance range. The effects of the shearing parameters on forces were in agreement with previous studies. Based on the agreement between calculations and experiments, analysis based on a plane strain assumption is considered applicable for angled tools with a small (up to 2 degrees) rake angle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

International audience

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arsenite is a major environmental toxicant that is well known to cause reproductive injury. The sperm protective potential of Ageratum conyzoides Linn in arsenic-treated rats was carried out in this study taking advantage of the antioxidant constituents and its androgenic activities. Twenty-four male albino rats aged 16 weeks, weighing 225 to 228g were used. They were grouped into 4(A-Da) with each group containing 6 rats. Group A was orally treated with 100mg/kg ethanol leaf extract of Ageratum conyzoides L., daily for 14 days, group B (single oral dose of sodium arsenite 2.5 mg/kg body weight), C (Ageratum conyzoides extract daily for 14 days and sodium arsenite (SA) given on the 14th day) and group D (Propylene glycol as negative control). It was observed that group B had a more lower (p<0.05) percentage motility (26.7±6.67%) when compared across the groups while group A had a significantly higher (p<0.05) mean value (63.3±3.33%). The sperm motility of rats in group D was significantly higher (p<0.05) than groups B and C. This implies that A. conyzoides extract had no adverse effect on the sperm motility of the rats and also ameliorates the adverse effect of arsenite on sperm motility. The mean value obtained for sperm liveability, semen volume and Sperm concentration followed a similar pattern although, the differences were not significant (p>0.05) for semen volume and the Sperm concentration of rats across the groups. The total sperm abnormality obtained across the groups ranges between 10.44 and 14.27% with group B treated with sodium arsenite (SA) having the highest value when compared with groups A and D, although, the differences were not significant (P>0.05). The study concluded that ethanol leaf extract of Ageratum conyzoides has no negative effect on sperm motility, liveability characteristics and morphology and also protected spermatozoa against arsenic reproductive toxicity in wistar strain albino rats..