938 resultados para in vitro culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel alpha-galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture-GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isoflavone genistein is found predominantly in soyabeans and is thought to possess various potent biological properties, including anticarcinogenic effects. Studies have shown that genistein is extensively degraded by the human gut microflora, presumably with a loss of its anti-carcinogenic action. The aim of the present study was to investigate the potential of a prebiotic to divert bacterial metabolism away from genistein breakdown: this may be of benefit to the host. Faecal samples were obtained from healthy volunteers and fermented in the presence of a source of soyabean isoflavones (Novasoy(TM) (10 g/l); ADM Neutraceuticals, Erith, Kent, UK). Bacterial genera of the human gut were enumerated using selective agars and genistein was quantified by HPLC. The experiment was repeated with the addition of glucose (10 g/l) or fructo-oligosaccharide (10 g/l; FOS) to the fermentation medium. The results showed most notably that counts of Bifidobacterium spp. and Lactobacillus spp. were significantly increased (P<0.05 and P<0.01 respectively) under steady-state conditions in the presence of FOS. Counts of Bacteroides spp. and Clostridium spp. were, however, both significantly reduced (P<0.05) during the fermentation. A decline in genistein concentration by about 52 and 56% over the 120h culture period was observed with the addition of glucose or FOS to the basal medium (P<0.01), compared with about 91% loss of genistein in the vessels containing Novasoy(TM) (ADM Neutraceuticals) only. Similar trends were obtained using a three-stage chemostat (gut model), in which once again the degradation of genistein was about 22% in vessel one, about 24% in vessel two and about 26% in vessel three in the presence of FOS, compared with a degradation of genistein of about 67% in vessel one, about 95% in vessel two and about 93% in vessel three in the gut model containing Novasoy(TM) (ADM Neutraceuticals) only. The present study has shown that the addition of excess substrate appeared to preserve genistein in vitro. In particular, the use of FOS not only augmented this effect, but also conferred an additional benefit in selectively increasing numbers of purportedly beneficial bacteria such as bifidobacteria and lactobacilli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To obtain structure-function information of a range of carbohydrates, which are available only in very small quantities, an in vitro fermentation method using 7 mg of carbohydrate, 0.7 mL of basal medium, and 1% (w/v) of fecal bacteria was validated against a pH-controlled batch culture with 150 mL of basal medium and 1.5g of test carbohydrate. This method was used to determine the influence of different glycosidic linkages and monosaccharide compositions of disaccharides on the selectivity of microbial fermentation. A prebiotic index (PI) was calculated for each disaccharide. Generally, disaccharides with linkages of 1-2, 1-4, and 1-6 generated a high PI score, with kojibiose and sophorose showing the greatest values (21.62 and 18.63, respectively). Apart from 6 alpha-mannobiose, mannose-containing disaccharicles gave a low PI due to low numbers of bifidobacteria and lactobacilli and an increase in bacteroides. The structure-function information obtained in this study may lead to a predictive understanding of how specific structures are fermented by the human gut microflora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anaerobic three-vessel continuous-flow culture system, which models the three major anatomical regions of the human colon, was used to study the persistence of Candida albicans in the presence of a faecal microbiota. During steady state conditions, overgrowth of C. albicans was prevented by commensal bacteria indigenous to the system. However antibiotics, such as tetracycline have the ability to disrupt the bacterial populations within the gut. Thus, colonization resistance can be compromised and overgrowth of undesirable microorganisms like C. albicans can then occur. In this study, growth of C. albicans was not observed in the presence of an established faecal microbiota. However, following the addition of tetracycline to the growth medium, significant growth of C. albicans occurred. A probiotic Lactobacillus plantarum LPK culture was added to the system to investigate whether this organism had any effects upon the Candida populations. Although C. albicans was not completely eradicated in the presence of this bacterium, cell counts were markedly reduced, indicating a compromised physiological function. This study shows that the normal gut flora can exert 'natural' resistance to C. albicans, however this may be diminished during antibiotic intake. The use of probiotics can help fortify natural resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of pH and substrate dose on the fermentation profile of a number of commercial prebiotics was analysed in triplicate using stirred, pH and temperature controlled anaerobic batch culture fermentations, inoculated with a fresh faecal slurry from one of three healthy volunteers. Bacterial numbers were enumerated using fluorescence in situ hybridisation. The commercial prebiotics investigated were fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose. Two pH values were investigated, i.e. pH 6 and 6.8. Doses of 1% and 2% (w/v) were investigated, equivalent to approximately 4 and 8 g per day, respectively, in an adult diet. It was found that both pH and dose altered the bacterial composition. It was observed that FOS and inulin demonstrated the greatest bifidogenic effect at pH 6.8 and 1% (w/v) carbohydrate, whereas GOS, IMO and lactulose demonstrated their greatest bifidogenic effect at pH 6 and 2% (w/v) carbohydrate. From this we can conclude that various prebiotics demonstrate differing bifidogenic effects at different conditions in vitro. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prebiotic effect of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel was studied using pure and mixed cultures of human faecal bacteria. This was compared to the prebiotic effect of fructo-oligosaccharides (FOS). Individual species of bifidobacteria and lactobacilli responded positively to the addition of the bergamot extract, which contained oligosaccharides in the range of three to seven. Fermentation studies were also carried out in controlled pH batch mixed human faecal cultures and changes in gut bacterial groups were monitored over 24 h by fluorescent in situ hybridisation, a culture-independent microbial assessment. Addition of the bergamot oligosaccharides (BOS) resulted in a high increase in the number of bifidobacteria and lactobacilli, whereas the clostridial population decreased. A prebiotic index (PI) was calculated for both FOS and BOS after 10 and 24 h incubation. Generally, higher PI scores were obtained after 10 h incubation, with BOS showing a greater value (6.90) than FOS (6.12).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fermentation of three arabinoxylan (AX) fractions from wheat by the human fecal microflora was investigated in vitro. Three AX fractions, with average molecular masses of 354, 278, and 66 kDa, were incorporated into miniature-scale batch cultures (with inulin as a positive prebiotic control) with feces from three healthy donors, aged 23-29. Microflora changes were monitored by the culture-independent technique, fluorescent in situ hybridization, and short chain fatty acid (SCFA) and lactic acid production were measured by high-performance liquid chromatography. Total cell numbers increased significantly in all treated cultures, and the fermentation of AX was associated with a proliferation of the bifidobacteria, lactobacilli, and eubacteria groups. Smaller but statistically significant increases in bacteroides and clostridia groups were also observed. All AX fractions had comparable bifidogenic impacts on the microflora at 5 and 12 h, but the 66 kDa AX was particularly selective for lactobacilli. Eubacteria increased significantly on all AX fractions, particularly on 66 kDa AX. As previously reported, inulin gave a selective increase in bifidobacteria. All supplemented cultures showed significant rises in total SCFA production, with a particularly high proportion of butyric acid being produced from AX fermentation. The prebiotic effect, that is, the selectivity of AX for bifidobacteria and lactobacilli groups, increased as the molecular mass of the AX decreased. This suggests that molecular mass may influence the fermentation of AX in the colon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was carried out to examine the effect or inulin (IN), fructooligosaccharide (FOS), polydextrose (POL) and isomaltooligosaccharides (ISO), alone and in combination, on gas production, gas composition and prebiotic effects. Static batch culture fermentation was performed with faecal samples from three healthy volunteers to study the volume and composition of gas generated and changes in bacterial populations. Four carbohydrates alone or mixed with one another (50:50) were examined. Prebiotic index (PI) was calculated and used to compare the prebiotic effect. The high amount of gas produced by IN was reduced by mixing it with FOS. No reduction in gas generation was observed when POL and ISO mixed with other substrates. It was found that the mixture of IN and FOS was effective in reducing the amount of gas produced while augmenting or maintaining their potential to Support the growth of bifidobacteria in Faecal batch culture as the highest PI was achieved with FOS alone and a mixture of FOS and IN. It was also found that high volume of gas was generated in presence of POL and ISO and they had lower prebiotic effect. The results of this study imply that a Mixture of prebiotics could prove effective in reducing the amount of gas generated by the gut microflora. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orlistat is an anti-obesity treatment with which several gastrointestinal (GI) side-effects are commonly associated in the initial stages of therapy. There is no physiological explanation as to why two-thirds of those who take the drug experience one or more side-effects. It has been hypothesized that the GI microbiota may protect from or contribute to these GI disturbances. Using in vitro batch culture and human gut model systems, studies were conducted to determine whether increased availability of dietary lipids and/or orlistat affect the composition and/or activity of the faecal microbiota. Results from 24-h batch culture fermentation experiments demonstrated no effect of orlistat in the presence or absence of a dietary lipid (olive oil) on the composition of bacterial communities [as determined by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses], but did show there was great variability in the lipolytic activities of the microbiotas of individuals, as determined by gas chromatography analysis of long-chain fatty acids in samples. Subsequent studies focused on the effect of orlistat in the presence and absence of lipid in in vitro human gut model systems. Systems were run for 14 days with gut model medium (GMM) only (to steady state, SS), then fed at 12-h intervals with 50 mg orlistat, 2 g olive oil or a mixture of both for 14 days. FISH and DGGE were used to monitor changes in bacterial populations. Bacteria were cultivated from the GMM only (control) systems at SS. All strains isolated were screened for lipolytic activity using tributyrin agar. FISH and DGGE demonstrated that none of the compounds (singly or in combination) added to the systems had any notable effect on microbial population dynamics for any of the donors, although Subdoligranulum populations appeared to be inhibited by orlistat in the presence or absence of lipid. Orlistat had little or no effect on the metabolism of indigenous and added lipids in the fermentation systems, but there was great variability in the way the faecal microbiotas of the donors were able to degrade added lipids. Variability in lipid degradation could be correlated with the number and activity of isolated lipolytic bacteria. The mechanism by which orlistat and the GI microbiota cause side-effects in individuals is unknown, but several hypotheses have been proposed to account for their manifestation. The demonstration of great variability in the lipolytic activity of microbiotas to degrade lipids led to a large-scale cultivation-based study of lipolytic/lipase-positive bacteria present in the human faecal microbiota. Of 4,000 colonies isolated from 15 donors using five different agars, 378 strains were identified that had lipase activity. Molecular identification of strains isolated from five donors demonstrated that lipase activity is more prevalent in the human GI microbiota than previously thought, with members of the phyla Firmicutes, Bacteroidetes and Actinobacteria identified. Molecular identification and characterization of the substrate specificities of the strains will be carried out as part of ongoing work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.