999 resultados para heat exhaustion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimizing a shell and tube heat exchanger for a given duty is an important and relatively difficult task. There is a need for a simple, general and reliable method for realizing this task. The authors present here one such method for optimizing single phase shell-and-tube heat exchangers with given geometric and thermohydraulic constraints. They discuss the problem in detail. Then they introduce a basic algorithm for optimizing the exchanger. This algorithm is based on data from an earlier study of a large collection of feasible designs generated for different process specifications. The algorithm ensures a near-optimal design satisfying the given heat duty and geometric constraints. The authors also provide several sub-algorithms to satisfy imposed velocity limitations. They illustrate how useful these sub-algorithms are with several examples where the exchanger weight is minimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is a numerical study of heat transfer characteristics from the bottom tip of a cylinder spinning about a vertical axis in an infinitely saturated porous medium. The problem is axisymmetric. The non-dimensionalized governing equations are solved using the SIMPLER algorithm on a staggered grid. The influence of rotational Reynolds numbers and Darcy numbers on the heat transfer for a Grashof number of 104 and Prandtl number of 7.0 is studied. It is found that for very high Darcy numbers, over a wide range of rotational Reynolds numbers, the heat transfer takes place mainly due to conduction. The convective heat transfer takes place for lower Darcy numbers and for higher rotational Reynolds numbers. Moreover, there is a rapid increase in the overall Nusselt number below a certain Darcy number with increase in the rotational Reynolds numbers. The effect of the Darcy number and the rotational Reynolds number on the heat transfer and fluid flow in the porous medium is depicted in the form of streamline and isotherm plots. The variation of the overall Nusselt number with respect to the Darcy number for various rotational Reynolds numbers is plotted. The variation of the local Nusselt number with respect to the radial coordinate at the heated tip of the vertical cylinder is plotted for various Darcy and rotational Reynolds numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural convection from an isothermal vertical surface to a thermally stratified fluid is studied numerically. A wide range of stratification levels is considered. It is shown that at high levels of ambient thermal stratification, a portion at the top of the plate absorbs heat, while a horizontal plume forms around a location where the plate temperature equals the ambient temperature. The plume is shown to be inherently unsteady, and its transient nature is investigated in detail. The effect of the temperature defect in striating the plume is discussed. Average Nusselt number data are presented for Pr = 6.0 and 0.7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk glasses of Ge(20)Se(80-x)ln(x) (O less than or equal to x less than or equal to 18) have been used for measurements of heat capacity at constant pressure (C-p) using a differential scanning calorimeter. These measurements reveal the chemical threshold in these glasses as a function of composition. The results are discussed in the light of microscopic phase separation in these glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tower data collected during the Monsoon-Trough Boundary Layer Experiment (MONTBLEX-90) have been analysed to understand the observed structure of the surface layer over an arid region (Jodhpur) and a moist region (Kharagpur) during active and weak phases of the 1990 southwest monsoon. Turbulent heat and momentum fluxes are estimated by the eddy correlation method using sonic data. The turbulent momentum flux at both Jodhpur and Kharagpur was larger when the winds were stronger, reaching a maximum of the order of 0.5 N m(-2) on 5 and 6 August when a low pressure system was located over the region. The heat flux at Jodhpur is high during weak monsoon days, the maximum being 450 W m(-2), whereas during active days the flux never exceeds 200 W m(-2). At Kharagpur, the flux does not vary significantly between active and weak monsoon days, the maximum in either phase being 160 W m(-2) At Jodhpur, there is significant contrast in the near-surface air temperature, being higher during weak monsoon days as compared to active days. Cloud cover did not vary significantly in both the regions. The turbulent heat flux variation at both the sites appears to be correlated mainly with soil mixture, and less sensitive to cloud cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he specific heats of EUNi(5)P(3), an antiferromagnet, and EuNi2P2, a mixed-valence compound, have been measured between 0.4 and 30 K in magnetic fields of, respectively, 0, 0.5, 1, 1.5, 2.5, 5, and 7 T, and 0 and 7 T. In zero field the specific heat of EuNi5P3 shows a h-like anomaly with a maximum at 8.3 K. With increasing field in the range 0-2.5 T, the maximum shifts to lower temperatures, as expected for an antiferromagnet. In higher fields the antiferromagnetic ordering is destroyed and the magnetic part of the specific heat approaches a Schottky anomaly that is consistent with expectations for the crystal-field/Zeeman levels. In low fields and for temperatures between 1.5 acid 5 K the magnetic contribution to the specific heat is proportional to the temperature, indicating a high density of excited states with an energy dependence that is very unusual for an antiferromagnet. The entropy associated with the magnetic ordering is similar to R In8, confirming that only the Eu2+-with J=7/2, S=7/2, L=0-orders below 30 R. In zero field approximately 20% of the entropy occurs above the Neel temperature, consistent. with the usual amount of short-range order observed in antiferromagnets. The hyperfine magnetic field at the Eu nuclei in EUNi(5)P(3) is 33.3 T, in good agreement with a value calculated from electron-nuclear double resonance measurements. For EuNi2P2 the specific heat is nearly field independent and shows no evidence of magnetic ordering or hyperfine fields. The coefficient of the electron contribution to the specific heat is similar to 100 mJ/mol K-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium-phase transition has been studied by Monte Carlo simulation in a ferromagnetically interacting (nearest-neighbour) kinetic Ising model in presence of a sinusoidally oscillating magnetic field. The ('specific-heat') temperature derivative of energies (averaged over a full cycle of the oscillating field) diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the role of melt convection on the performance of heat sinks with phase change material (PCM) is investigated numerically. The heat sink consists of aluminum plate fins embedded in PCM, and is subjected to heat flux supplied from the bottom. A single-domain enthalpy-based CFD model is developed, which is capable of simulating the phase change process and the associated melt convection. The CFD model is coupled with a genetic algorithm for carrying out the optimization. Two cases are considered, namely, one without melt convection (i.e., conduction heat transfer analysis), and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of melt convection in the design of heat sinks with PCMs. In the case of conduction analysis, the optimum width of half fin (i.e., sum of half pitch and half fin thickness) is a constant, which is in good agreement with results reported in the literature. On the other hand, if melt convection is considered, the optimum half fin width depends on the effective thermal diffusivity due to conduction and convection. With melt convection, the optimized design results in a significant improvement of operational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).