887 resultados para healing mineral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been a few studies on the thermal decomposition of dioptase Cu6[Si6O18]·6H2O. The results of these analyses are somewhat conflicting and the conclusions vary among these thermo-analytical studies. The objective of this research is to report the thermal analysis of dioptase from different origins and to show the mechanism of decomposition. Thermal decomposition occurs over a very wide temperature range from around 400 to 730 °C with the loss of water. Two additional mass loss steps are observed at around 793 and 835 °C with loss of oxygen. The infrared spectra of dioptase in the hydroxyl stretching region enables the hydrogen bond distances of water molecules in the dioptase structure to be calculated. The large variation in the hydrogen bond distances offers an explanation as to why the decomposition of dioptase with loss of water occurs over such a wide temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering should be designed to optimize cell migration, enhance new bone formation and give mechanical support. In the present study, we used polycaprolactone-tricalciumphosphate (PCL/TCP) scaffolds with two different fibre lay down patterns which were coated with hydroxyapatite and gelatine as an approach for optimizing bone regeneration in a critical sized calvarial defect. After 12 weeks bone regeneration was quantified using microCT analysis, biomechanical testing and histological evaluation. Notably, the experimental groups containing coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different lay down pattern of the fibres resulted in different bone formation and biomechanical properties; namely 0/60/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0/90° scaffolds in all the experimental groups. The different architecture of the scaffold fibres may have an effect on nutrition supply as well as the attachment of the newly formed matrix to the scaffold. Therefore, future bone regeneration strategies utilising scaffolds should consider scaffold architecture as an important factor during the scaffold optimisation stages in order to move closer to a clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral väyrynenite from the Viitaniemi pegmatite, located in the Eräjärvi area, Finland using a combination of electron microscopy electron microprobe and vibrational spectroscopic techniques. Chemical analysis shows the formula of the mineral to be (Mn0.88,Fe0.08,Mg0.01)∑0.97Be1.02(PO4)1.00(OH)1.02. Vibrational spectroscopy enables an assessment of the molecular structure of väyrynenite to be assessed. An intense Raman band at 1004 cm−1 is to the ν1 symmetric stretching mode. The observation of multiple bands in the phosphate stretching region, offers support for the concept of different phosphate units in the väyrynenite structure. Infrared spectroscopy confirms this multiplicity of vibrational bands. Multiple bands are observed in the phosphate bending region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5�H2O and occurs as white complex acicular to crude crystals with length up to �4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm�1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm�1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm�1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm�1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kovdorskite Mg2PO4(OH)�3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm�1 attributed to the PO3� 4 m1 symmetric stretching mode. Raman bands at 1057 and 1089 cm�1 are attributed to the PO3�4 m3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm�1 are assigned to the PO3�4 m2 bending modes. Raman bands at 536, 546 and 574 cm�1 are assigned to the PO3�4 m4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm�1 assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm�1 are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)�3H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO2/4- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the m1 PO3/4- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the v3PO3/4- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the m4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the m2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bermanite Mn2þMn3þ2 ðPO4Þ2ðOHÞ2 � 4ðH2OÞ is a mixed valent hydrated hydroxy phosphate mineral. The mineral is reddish-brown and occurs in crystal aggregates and as lamellar masses. Bermanite is a common mineral in granitic pegmatites. The chemical composition of bermanite was obtained using EDS techniques. We have studied the molecular structure of bermanite using vibrational spectroscopy. The mineral is characterized by a Raman doublet at 991 and 999 cm-1 attributed to the phosphate stretching mode of two non-equivalent phosphate units. Raman bands at 1071, 1117 and 1142 cm-1 are assigned to the phosphate antisymmetric stretching modes. The hydroxyl stretching spectral region is complex with overlapping bands attributed to water and hydroxyl stretching vibrations. Vibrational spectroscopy proves most useful for the study of the mineral bermanite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.