961 resultados para harmonic oscillators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical properties offast-slow Ellias-Grossberg oscillators are studied in response to deterministic and noisy inputs. Oscillatory responses remain stable in noise due to the slow inhibitory variable, which establishes an adaptation level that centers the oscillatory responses of the fast excitatory variable to deterministic and noisy inputs. Competitive interactions between oscillators improve the stability in noise. Although individual oscillation amplitudes decrease with input amplitude, the average to'tal activity increases with input amplitude, thereby suggesting that oscillator output is evaluated by a slow process at downstream network sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension to the Boundary Contour System model is proposed to account for boundary completion through vertices with arbitrary numbers of orientations, in a manner consistent with psychophysical observartions, by way of harmonic resonance in a neural architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear metamaterials have been predicted to support new and exciting domains in the manipulation of light, including novel phase-matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. In this Letter, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index nonlinear metamaterial, along with two other novel phase-matching configurations, utilizing periodic poling to switch between the three phase-matching domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally- derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A singular perturbation method is applied to a non-conservative system of two weakly coupled strongly nonlinear non-identical oscillators. For certain parameters, localized solutions exist for which the amplitude of one oscillator is an order of magnitude smaller than the other. It is shown that these solutions are described by coupled equations for the phase difference and scaled amplitudes. Three types of localized solutions are obtained as solutions to these equations which correspond to phase locking, phase drift, and phase entrainment. Quantitative results for the phases and amplitudes of the oscillators and the stability of these phenomena are expressed in terms of the parameters of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of extremely bright coherent X-ray pulses in the femtosecond and attosecond regime is currently one of the most exciting frontiers of physics - allowing, for the first time, measurements with unprecedented temporal resolution(1-6). Harmonics from laser - solid target interactions have been identified as a means of achieving fields as high as the Schwinger limit(2,7) (E = 1.3 x 10(16) V m(-1)) and as a highly promising route to high-efficiency attosecond (10(-18) s) pulses(8) owing to their intrinsically phase-locked nature. The key steps to attain these goals are achieving high conversion efficiencies and a slow decay of harmonic efficiency to high orders by driving harmonic production to the relativistic limit(1). Here we present the first experimental demonstration of high harmonic generation in the relativistic limit, obtained on the Vulcan Petawatt laser(9). High conversion efficiencies (eta> 10(-6) per harmonic) and bright emission (> 10(22) photons s(-1) mm(-2) mrad(-2) (0.1% bandwidth)) are observed at wavelengths <4 nm ( the 'water-window' region of particular interest for bio-microscopy).