968 resultados para growth hormone deficiency
Resumo:
Despite the differences in the main characteristics between the autosomal dominant form of GH deficiency (IGHD II) and the bioinactive GH syndrome, a common feature of both is their impact on linear growth leading to short stature in all affected patients.
Resumo:
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo of GH replacement therapy (GHRT) and in 11 healthy control subjects. Measurements of insulin resistance and exercise capacity were performed and skeletal muscle biopsies were carried out to assess expression of mRNA of key enzymes involved in skeletal muscle lipid metabolism by real-time PCR and ultrastructure by electron microscopy. Compared with control subjects, patients with GHD showed significantly higher difference between IMCL-depleted and IMCL-repleted. GHRT resulted in an increase in skeletal muscle mRNA expression of IGF-I, hormone-sensitive lipase, and a tendency for an increase in fatty acid binding protein-3. Electron microscopy examination did not reveal significant differences after GHRT. In conclusion, variation of IMCL may be increased in patients with GHD compared with healthy control subjects. Qualitative changes within the skeletal muscle (i.e., an increase in free fatty acids availability from systemic and/or local sources) may contribute to the increase in insulin resistance and possibly to the improvement of exercise capacity after GHRT. The upregulation of IGF-I mRNA suggests a paracrine/autocrine role of IGF-I on skeletal muscle.
Resumo:
The objective of this study was to review the growth curves for Turner syndrome, evaluate the methodological and statistical quality, and suggest potential growth curves for clinical practice guidelines. The search was carried out in the databases Medline and Embase. Of 1006 references identified, 15 were included. Studies constructed curves for weight, height, weight/height, body mass index, head circumference, height velocity, leg length, and sitting height. The sample ranged between 47 and 1,565 (total = 6,273) girls aged 0 to 24 y, born between 1950 and 2006. The number of measures ranged from 580 to 9,011 (total = 28,915). Most studies showed strengths such as sample size, exclusion of the use of growth hormone and androgen, and analysis of confounding variables. However, the growth curves were restricted to height, lack of information about selection bias, limited distributional properties, and smoothing aspects. In conclusion, we observe the need to construct an international growth reference for girls with Turner syndrome, in order to provide support for clinical practice guidelines.
Resumo:
Background: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. Discussion: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is <= -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. Summary: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.
Resumo:
Complex glycoprotein biopharmaceuticals, such as follicle stimulating hormone (FSH), erythropoietin and tissue plasminogen activator consist of a range of charge isoforms due to the extent of sialic acid capping of the glycoprotein glycans. Sialic acid occupies the terminal position on the oligosaccharide chain, masking the penultimate sugar residue, galactose from recognition and uptake by the hepatocyte asialoglycoprotein receptor. It is therefore well established that the more acidic charge isoforms of glycoprotein biopharmaceuticals have higher in vivo potencies than those of less acidic isoforms due to their longer serum half-life. Current strategies for manipulating glycoprotein charge isoform profile involve cell engineering or altering bioprocesss parameters to optimise expression of more acidic or basic isoforms, rather than downstream separation of isoforms. A method for the purification of a discrete range of bioactive recombinant human FSH (rhFSH) charge isoforms based on Gradiflow(TM) preparative electrophoresis technology is described. Gradiflow(TM) electrophoresis is scaleable, and incorporation into glycoprotein biopharmaceutical production bioprocesses as a potential final step facilitates the production of biopharmaceutical preparations of improved in vivo potency. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Growth retardation, associated with delayed puberty, is a frequent feature in pediatric patients with inflammatory bowel disease (IBD), especially with Crohn's disease. It is mainly induced by malnutrition and the effects of the inflammatory process on the growth hormone/insulin-like growth factor-1 axis or on the growth plate. Therefore, control of disease activity and mucosal healing are paramount to promote growth and adequate pubertal onset. Current therapeutic strategies for maintenance in IBD include anti-inflammatory drugs, immunosuppressives, and, more recently, biologic agents. Although these treatments are efficient in minimizing inflammation and inducing prolonged remission, their long-term effects on growth and final height remain controversial. Furthermore, glucocorticoid therapy, even though very efficient in inducing remission, clearly shows deleterious effects on growth, which is not the case for exclusive enteral nutrition showing comparable results regarding induction of remission. Thus regular assessment of weight, height and pubertal stage is essential in children and adolescents with chronic disease, namely IBD.
Resumo:
An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI < 18.5 kg/m2) and twenty healthy women with BMI >18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients.
Resumo:
Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.
Resumo:
OBJECTIVE: Hypopituitarism is associated with an increased mortality rate but the reasons underlying this have not been fully elucidated. The purpose of this study was to evaluate mortality and associated factors within a large GH-replaced population of hypopituitary patients. DESIGN: In KIMS (Pfizer International Metabolic Database) 13,983 GH-deficient patients with 69,056 patient-years of follow-up were available. METHODS: This study analysed standardised mortality ratios (SMRs) by Poisson regression. IGF1 SDS was used as an indicator of adequacy of GH replacement. Statistical significance was set to P<0.05. RESULTS: All-cause mortality was 13% higher compared with normal population rates (SMR, 1.13; 95% confidence interval, 1.04-1.24). Significant associations were female gender, younger age at follow-up, underlying diagnosis of Cushing's disease, craniopharyngioma and aggressive tumour and presence of diabetes insipidus. After controlling for confounding factors, there were statistically significant negative associations between IGF1 SDS after 1, 2 and 3 years of GH replacement and SMR. For cause-specific mortality there was a negative association between 1-year IGF1 SDS and SMR for deaths from cardiovascular diseases (P=0.017) and malignancies (P=0.044). CONCLUSIONS: GH-replaced patients with hypopituitarism demonstrated a modest increase in mortality rate; this appears lower than that previously published in GH-deficient patients. Factors associated with increased mortality included female gender, younger attained age, aetiology and lower IGF1 SDS during therapy. These data indicate that GH replacement in hypopituitary adults with GH deficiency may be considered a safe treatment.
Resumo:
Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.
Resumo:
Isolated gonadotropin-releasing hormone (GnRH) deficiency is a treatable albeit rare form of reproductive failure that has revealed physiological mechanisms controlling human reproduction, but despite substantial progress in discovering pathogenic single-gene defects, most of the genetic basis of GnRH deficiency remains uncharted. Although unbiased genetic investigations of affected families have identified mutations in previously unsuspected genes as causes of this disease in some cases, their application has been severely limited because of the negative effect of GnRH deficiency on fertility; moreover, relatively few of the many candidate genes nominated because of biological plausibility from in vitro or animal model experiments were subsequently validated in patients. With the advent of exciting technological platforms for sequencing, homozygosity mapping, and detection of structural variation at the whole-genome level, human investigations are again assuming the leading role for gene discovery. Using human GnRH deficiency as a paradigm and presenting original data from the screening of numerous candidate genes, we discuss the emerging model of patient-focused clinical genetic research and its complementarities with basic approaches in the near future.
Resumo:
Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. Methods: We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Results: Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Conclusions: Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.)
Resumo:
Plants are photoautotrophic sessile organisms that use environmental cues to optimize multiple facets of growth and development. A classic example is phototropism - in shoots this is typically positive, leading to growth towards the light, while roots frequently show negative phototropism triggering growth away from the light. Shoot phototropism optimizes light capture of leaves in low light environments and hence increases photosynthetic productivity. Phototropins are plasma-membrane-associated UV-A/blue-light activated kinases that trigger phototropic growth. Light perception liberates their protein kinase domain from the inhibitory action of the amino-terminal photosensory portion of the photoreceptor. Following a series of still poorly understood events, phototropin activation leads to the formation of a gradient of the growth hormone auxin across the photo-stimulated stem. The greater auxin concentration on the shaded compared with the lit side of the stem enables growth reorientation towards the light. In this Minireview, we briefly summarize the signaling steps starting from photoreceptor activation until the establishment of a lateral auxin gradient, ultimately leading to phototropic growth in shoots.
Resumo:
PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. METHODS: We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. RESULTS: We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. CONCLUSION: FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.Genet Med 17 8, 651-659.
Resumo:
This study evaluated the effect of menopause, hormone therapy (HT) and aging on sleep. Further, the mechanisms behind these effects were examined by studying the associations between sleep and the nocturnal profiles of sleep-related hormones. Crosssectional study protocols were used to evaluate sleep in normal conditions and during recovery from sleep deprivation. The effect of initiation of HT on sleep and sleeprelated hormones was studied in a prospective controlled trial. Young, premenopausal and postmenopausal women were studied, and the methods included polysomnography, 24-h blood sampling, questionnaires and cognitive tests of attention. Postmenopausal women were less satisfied with their sleep quality than premenopausal women, but this was not reflected in sleepiness or attention. The objective sleep quality was mainly similar in pre- and postmenopausal women, but differed from young women. The recovery mechanisms from sleep deprivation were relatively well-preserved after menopause. HT offered no advantage to sleep after sleep deprivation or under normal conditions. The decreased growth hormone (GH) and prolactin (PRL) levels after menopause were reversible with HT. Neither menopause nor HT had any effect on cortisol levels. In premenopausal women, HT had only minor effects on PRL and cortisol levels. The temporal link between GH and slow wave sleep (SWS) was weaker after menopause. PRL levels were temporally associated with sleep stages, and higher levels were seen during SWS and lower during rapid-eye-movement (REM) sleep. Sleep quality after menopause is better determined by age than by menopausal state. Although HT restores the decreased levels of GH and PRL after menopause, it offers no advantage to sleep quality under normal conditions or after sleep deprivation.