900 resultados para grid graphs
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Resumo:
A new scalable Monotonically Integrated Large Eddy Simulation (MILES) method based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) has been applied for the simulation of unsteady flow around NACA0012 airfoil at Re = 400,000 and M = 0.058. The flow solution is coupled with the Ffowcs Williams-Hawkings formulation for far-field noise prediction. The computational modeling results are presented for several computational grid resolutions: 8, 16, and 32 million grid cells and compared with the experimental data available.
Resumo:
We present a fixed-grid finite element technique for fluid-structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b-spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision-stabilisation technique is used to ensure inf-sup stability. The beam equations are discretised with b-splines and the shell equations with subdivision basis functions, both leading to a rotation-free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet-Robin partitioning scheme, and the fluid equations are solved with a pressure-correction method. Auxiliary techniques employed for improving numerical robustness include the level-set based implicit representation of the structure interface on the fluid grid, a cut-cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper develops a sociomaterial perspective on digital coordination. It extends Pickering’s mangle of practice by using a trichordal approach to temporal emergence. We provide new understanding as to how the nonhuman and human agencies involved in coordination are embedded in the past, present, and future. We draw on an in-depth field study conducted between 2006 and 2010 of the development, introduction, and use of a computing grid infrastructure by the CERN particle physics community. Three coordination tensions are identified at different temporal dimensions, namelyobtaining adequate transparency in the present, modeling a future infrastructure, and the historical disciplining of social and material inertias. We propose and develop the concept of digital coordination, and contribute a trichordal temporal approach to understanding the development and use of digital infrastructure as being orientated to the past and future while emerging in the present.
Resumo:
A discrete element model (DEM) combined with computational fluid dynamics (CFD) was developed to model particle and fluid behaviour in 3D cylindrical fluidized beds. Novel techniques were developed to (1) keep fluid cells, defined in cylindrical coordinates, at a constant volume in order to ensure the conditions for validity of the volume-averaged fluid equations were satisfied and (2) smoothly and accurately measure voidage in arbitrarily shaped fluid cells. The new technique for calculating voidage was more stable than traditional techniques, also examined in the paper, whilst remaining computationally-effective. The model was validated by quantitative comparison with experimental results from the magnetic resonance imaging of a fluidised bed analysed to give time-averaged particle velocities. Comparisons were also made between theoretical determinations of slug rise velocity in a tall bed. It was concluded that the DEM-CFD model is able to investigate aspects of the underlying physics of fluidisation not readily investigated by experiment. © 2014 The Authors.
Resumo:
We investigate the development of cross-hatch grid surface morphology in growing mismatched layers and its effect on ordering growth of quantum dots (QDs). For a 60degrees dislocation (MD), the effective part in strain relaxation is the part with the Burgers vector parallel to the film/substrate interface within its b(edge) component; so the surface stress over a MD is asymmetric. When the strained layer is relatively thin, the surface morphology is cross-hatch grid with asymmetric ridges and valleys. When the strained layer is relatively thick, the ridges become nearly symmetrical, and the dislocations and the ridges inclined-aligned. In the following growth of InAs, QDs prefer to nucleate on top of the ridges. By selecting ultra-thin In0.15Ga0.85As layer (50nm) and controlling the QDs layer at just formed QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.
Resumo:
The two-dimensional grid patterns on Si(001) in nanometer scale have been fabricated by holographic lithography and reactive ion etching, which can be used as a substrate for positioning Ge islands during self-assembled epitaxy to obtain an ordered Ge quantum dots matrix. By changing the configuration of the holographic lithography and the etching rate and time, we can control the grid period, the shape of the pattern cell, and the orientation of those shapes, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.
Resumo:
简要介绍网格、密码计算特点和Crypto-grid的主要服务和组成,然后从系统需求、实现方法、主要功能模块、子任务计算实现等几个方面来剖析密码网格计算系统.