936 resultados para germs of holomorphic generalized functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33D15, 44A10, 44A20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subject Classification 2010: 11M26, 33C45, 42A38.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 30C45, 30C50

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises involving the calculation of the derivative of piecewise defined functions are common in calculus, with the aim of consolidating beginners’ knowledge of applying the definition of the derivative. In such exercises, the piecewise function is commonly made up of two smooth pieces joined together at one point. A strategy which avoids using the definition of the derivative is to find the derivative function of each smooth piece and check whether these functions agree at the chosen point. Showing that this strategy works together with investigating discontinuities of the derivative is usually beyond a calculus course. However, we shall show that elementary arguments can be used to clarify the calculation and behaviour of the derivative for piecewise functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Иво Й. Дамянов - Манипулирането на булеви функции е основнo за теоретичната информатика, в това число логическата оптимизация, валидирането и синтеза на схеми. В тази статия се разглеждат някои първоначални резултати относно връзката между граф-базираното представяне на булевите функции и свойствата на техните променливи.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 43A22, 43A25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 32F45.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 30C10, 32A30, 30G35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 33B10, 33E20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a summary of the series representations of the remainders in the expansions in ascending powers of t of 2/(et+1)2/(et+1) , sech t and coth t and establish simple bounds for these remainders when t>0t>0 . Several applications of these expansions are given which enable us to deduce some inequalities and completely monotonic functions associated with the ratio of two gamma functions. In addition, we derive a (presumably new) quadratic recurrence relation for the Bernoulli numbers Bn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study congruences in the coefficients of modular and other automorphic forms. Ramanujan famously found congruences for the partition function like p(5n+4) = 0 mod 5. For a wide class of modular forms, we classify the primes for which there can be analogous congruences in the coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan congruences in the counting functions for overparitions, overpartition pairs, crank differences, and Andrews' two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number of holomorphic modular forms with Ramanujan congruences when the weight is large enough. In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter contains a completely unrelated result about harmonic weak Maass forms.