911 resultados para geometric mean diameter
Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density
Resumo:
Despite the increasing relevance of mixed stands due to their potential benefits; little information is available with regard to the effect of mixtures on yield in forest systems. Hence, it is necessary to study inter-specific relationships, and the resulting yield in mixed stands, which may vary with stand development, site or stand density, etc. In Spain, the province of Navarra is considered one of the biodiversity reservoirs; however, mixed forests occupy only a small area, probably as a consequence of management plans, in which there is an excessive focus on the productivity aspect, favoring the presence of pure stands of the most marketable species. The aim of this paper is to study how growth efficiencies of beech (Fagus sylvatica) and pine (Pinus sylvestris) are modified by the admixture of the other species and to determine whether stand density modifies interspecific relationships and to what extent. Two models were fitted from Spanish National Forest Inventory data, for P. sylvestris and F. sylvatica respectively, which relate the growth efficiency of the species, i.e. the volume increment of the species divided by the species proportion by area, with dominant height, quadratic mean diameter, stocking degree, and the species proportions by area of each species. Growth efficiency of pine increased with the admixture of beech, decreasing this positive effect when stocking degree increased. However, the positive effect of pine admixture on beech growth was greater at higher stocking degrees. Growth efficiency of beech was also dependent on stand dominant height, resulting in a net negative mixing effect when stand dominant heights and stocking degrees were simultaneously low. There is a relatively large range of species proportions and stocking degrees which results in transgressive overyielding: higher volume increments in mixed stands than that of the most productive pure pine stands. We concluded that stocking degree is a key factor in between-species interactions, being the effects of mixing not always greater at higher stand densities, but it depends on species composition.
Resumo:
Este estudio profundiza en la estimación de variables forestales a partir de información LiDAR en el Valle de la Fuenfría (Cercedilla, Madrid). Para ello se dispone de dos vuelos realizados con sensor LiDAR en los años 2002 y 2011 y en el invierno de 2013 se ha realizado un inventario de 60 parcelas de campo. En primer lugar se han estimado seis variables dasométricas (volumen, área basimétrica, biomasa total, altura dominante, densidad y diámetro medio cuadrático) para 2013, tanto a nivel de píxel como a nivel de rodal y monte. Se construyeron modelos de regresión lineal múltiple que permitieron estimar con precisión dichas variables. En segundo lugar, se probaron diferentes métodos para la estimación de la distribución diamétrica. Por un lado, el método de predicción de percentiles y, por otro lado, el método de predicción de parámetros. Este segundo método se probó para una función Weibull simple, una función Weibull doble y una combinación de ambas según la distribución que mejor se ajustaba a cada parcela. Sin embargo, ninguno de los métodos ha resultado suficientemente válido para predecir la distribución diamétrica. Por último se estimaron el crecimiento en volumen y área basimétrica a partir de la comparación de los vuelos del 2002 y 2011. A pesar de que la tecnología LiDAR era diferente y solo se disponía de un inventario completo, realizado en 2013, los modelos construidos presentan buenas bondades de ajuste. Asimismo, el crecimiento a nivel de pixel se ha mostrado estar relacionado de forma estadísticamente significativa con la pendiente, orientación y altitud media del píxel. ABSTRACT This project goes in depth on the estimation of forest attributes by means of LiDAR data in Fuenfria’s Valley (Cercedilla, Madrid). The available information was two LiDAR flights (2002 and 2011) and a forest inventory consisting of 60 plots (2013). First, six different dasometric attributes (volume, basal area, total aboveground biomass, top height, density and quadratic mean diameter) were estimated in 2013 both at a pixel, stand and forest level. The models were developed using multiple linear regression and were good enough to predict these attributes with great accuracy. Second, the measured diameter distribution at each plot was fitted to a simple and a double Weibull distribution and different methods for its estimation were tested. Neither parameter prediction method nor percentile prediction method were able to account for the diameter distribution. Finally, volume and top height growths were estimated comparing 2011 LiDAR flight with 2002 LiDAR flight. Even though the LiDAR technology was not the same and there was just one forest inventory with sample plots, the models properly explain the growth. Besides, growth at each pixel is significantly related to its average slope, orientation and altitude.
Resumo:
Singular-value decomposition (SVD)-based multiple-input multiple output (MIMO) systems, where the whole MIMO channel is decomposed into a number of unequally weighted single-input single-output (SISO) channels, have attracted a lot of attention in the wireless community. The unequal weighting of the SISO channels has led to intensive research on bit- and power allocation even in MIMO channel situation with poor scattering conditions identified as the antennas correlation effect. In this situation, the unequal weighting of the SISO channels becomes even much stronger. In comparison to the SVD-assisted MIMO transmission, geometric mean decomposition (GMD)-based MIMO systems are able to compensate the drawback of weighted SISO channels when using SVD, where the decomposition result is nearly independent of the antennas correlation effect. The remaining interferences after the GMD-based signal processing can be easily removed by using dirty paper precoding as demonstrated in this work. Our results show that GMD-based MIMO transmission has the potential to significantly simplify the bit and power loading processes and outperforms the SVD-based MIMO transmission as long as the same QAM-constellation size is used on all equally-weighted SISO channels.
Resumo:
Disponer de información precisa y actualizada de inventario forestal es una pieza clave para mejorar la gestión forestal sostenible y para proponer y evaluar políticas de conservación de bosques que permitan la reducción de emisiones de carbono debidas a la deforestación y degradación forestal (REDD). En este sentido, la tecnología LiDAR ha demostrado ser una herramienta perfecta para caracterizar y estimar de forma continua y en áreas extensas la estructura del bosque y las principales variables de inventario forestal. Variables como la biomasa, el número de pies, el volumen de madera, la altura dominante, el diámetro o la altura media son estimadas con una calidad comparable a los inventarios tradicionales de campo. La presente tesis se centra en analizar la aplicación de los denominados métodos de masa de inventario forestal con datos LIDAR bajo diferentes condiciones y características de masa forestal (bosque templados puros y mixtos) y utilizando diferentes bases de datos LiDAR (información proveniente de vuelo nacionales e información capturada de forma específica). Como consecuencia de lo anterior, se profundiza en la generación de inventarios forestales continuos con LiDAR en grandes áreas. Los métodos de masa se basan en la búsqueda de relaciones estadísticas entre variables predictoras derivadas de la nube de puntos LiDAR y las variables de inventario forestal medidas en campo con el objeto de generar una cartografía continua de inventario forestal. El rápido desarrollo de esta tecnología en los últimos años ha llevado a muchos países a implantar programas nacionales de captura de información LiDAR aerotransportada. Estos vuelos nacionales no están pensados ni diseñados para fines forestales por lo que es necesaria la evaluación de la validez de esta información LiDAR para la descripción de la estructura del bosque y la medición de variables forestales. Esta información podría suponer una drástica reducción de costes en la generación de información continua de alta resolución de inventario forestal. En el capítulo 2 se evalúa la estimación de variables forestales a partir de la información LiDAR capturada en el marco del Plan Nacional de Ortofotografía Aérea (PNOA-LiDAR) en España. Para ello se compara un vuelo específico diseñado para inventario forestal con la información de la misma zona capturada dentro del PNOA-LiDAR. El caso de estudio muestra cómo el ángulo de escaneo, la pendiente y orientación del terreno afectan de forma estadísticamente significativa, aunque con pequeñas diferencias, a la estimación de biomasa y variables de estructura forestal derivadas del LiDAR. La cobertura de copas resultó más afectada por estos factores que los percentiles de alturas. Considerando toda la zona de estudio, la estimación de la biomasa con ambas bases de datos no presentó diferencias estadísticamente significativas. Las simulaciones realizadas muestran que las diferencias medias en la estimación de biomasa entre un vuelo específico y el vuelo nacional podrán superar el 4% en áreas abruptas, con ángulos de escaneo altos y cuando la pendiente de la ladera no esté orientada hacia la línea de escaneo. En el capítulo 3 se desarrolla un estudio en masas mixtas y puras de pino silvestre y haya, con un enfoque multi-fuente empleando toda la información disponible (vuelos LiDAR nacionales de baja densidad de puntos, imágenes satelitales Landsat y parcelas permanentes del inventario forestal nacional español). Se concluye que este enfoque multi-fuente es adecuado para realizar inventarios forestales continuos de alta resolución en grandes superficies. Los errores obtenidos en la fase de ajuste y de validación de los modelos de área basimétrica y volumen son similares a los registrados por otros autores (usando un vuelo específico y parcelas de campo específicas). Se observan errores mayores en la variable número de pies que los encontrados en la literatura, que pueden ser explicados por la influencia de la metodología de parcelas de radio variable en esta variable. En los capítulos 4 y 5 se evalúan los métodos de masa para estimar biomasa y densidad de carbono en bosques tropicales. Para ello se trabaja con datos del Parque Nacional Volcán Poás (Costa Rica) en dos situaciones diferentes: i) se dispone de una cobertura completa LiDAR del área de estudio (capitulo 4) y ii) la cobertura LiDAR completa no es técnica o económicamente posible y se combina una cobertura incompleta de LiDAR con imágenes Landsat e información auxiliar para la estimación de biomasa y carbono (capitulo 5). En el capítulo 4 se valida un modelo LiDAR general de estimación de biomasa aérea en bosques tropicales y se compara con los resultados obtenidos con un modelo ajustado de forma específica para el área de estudio. Ambos modelos están basados en la variable altura media de copas (TCH por sus siglas en inglés) derivada del modelo digital LiDAR de altura de la vegetación. Los resultados en el área de estudio muestran que el modelo general es una alternativa fiable al ajuste de modelos específicos y que la biomasa aérea puede ser estimada en una nueva zona midiendo en campo únicamente la variable área basimétrica (BA). Para mejorar la aplicación de esta metodología es necesario definir en futuros trabajos procedimientos adecuados de medición de la variable área basimétrica en campo (localización, tamaño y forma de las parcelas de campo). La relación entre la altura media de copas del LiDAR y el área basimétrica (Coeficiente de Stock) obtenida en el área de estudio varía localmente. Por tanto es necesario contar con más información de campo para caracterizar la variabilidad del Coeficiente de Stock entre zonas de vida y si estrategias como la estratificación pueden reducir los errores en la estimación de biomasa y carbono en bosques tropicales. En el capítulo 5 se concluye que la combinación de una muestra sistemática de información LiDAR con una cobertura completa de imagen satelital de moderada resolución (e información auxiliar) es una alternativa efectiva para la realización de inventarios continuos en bosques tropicales. Esta metodología permite estimar altura de la vegetación, biomasa y carbono en grandes zonas donde la captura de una cobertura completa de LiDAR y la realización de un gran volumen de trabajo de campo es económica o/y técnicamente inviable. Las alternativas examinadas para la predicción de biomasa a partir de imágenes Landsat muestran una ligera disminución del coeficiente de determinación y un pequeño aumento del RMSE cuando la cobertura de LiDAR es reducida de forma considerable. Los resultados indican que la altura de la vegetación, la biomasa y la densidad de carbono pueden ser estimadas en bosques tropicales de forma adecuada usando coberturas de LIDAR bajas (entre el 5% y el 20% del área de estudio). ABSTRACT The availability of accurate and updated forest data is essential for improving sustainable forest management, promoting forest conservation policies and reducing carbon emissions from deforestation and forest degradation (REDD). In this sense, LiDAR technology proves to be a clear-cut tool for characterizing forest structure in large areas and assessing main forest-stand variables. Forest variables such as biomass, stem volume, basal area, mean diameter, mean height, dominant height, and stem number can be thus predicted with better or comparable quality than with costly traditional field inventories. In this thesis, it is analysed the potential of LiDAR technology for the estimation of plot-level forest variables under a range of conditions (conifer & broadleaf temperate forests and tropical forests) and different LiDAR capture characteristics (nationwide LiDAR information vs. specific forest LiDAR data). This study evaluates the application of LiDAR-based plot-level methods in large areas. These methods are based on statistical relationships between predictor variables (derived from airborne data) and field-measured variables to generate wall to wall forest inventories. The fast development of this technology in recent years has led to an increasing availability of national LiDAR datasets, usually developed for multiple purposes throughout an expanding number of countries and regions. The evaluation of the validity of nationwide LiDAR databases (not designed specifically for forest purposes) is needed and presents a great opportunity for substantially reducing the costs of forest inventories. In chapter 2, the suitability of Spanish nationwide LiDAR flight (PNOA) to estimate forest variables is analyzed and compared to a specifically forest designed LiDAR flight. This study case shows that scan angle, terrain slope and aspect significantly affect the assessment of most of the LiDAR-derived forest variables and biomass estimation. Especially, the estimation of canopy cover is more affected than height percentiles. Considering the entire study area, biomass estimations from both databases do not show significant differences. Simulations show that differences in biomass could be larger (more than 4%) only in particular situations, such as steep areas when the slopes are non-oriented towards the scan lines and the scan angles are larger than 15º. In chapter 3, a multi-source approach is developed, integrating available databases such as nationwide LiDAR flights, Landsat imagery and permanent field plots from SNFI, with good resultos in the generation of wall to wall forest inventories. Volume and basal area errors are similar to those obtained by other authors (using specific LiDAR flights and field plots) for the same species. Errors in the estimation of stem number are larger than literature values as a consequence of the great influence that variable-radius plots, as used in SNFI, have on this variable. In chapters 4 and 5 wall to wall plot-level methodologies to estimate aboveground biomass and carbon density in tropical forest are evaluated. The study area is located in the Poas Volcano National Park (Costa Rica) and two different situations are analyzed: i) available complete LiDAR coverage (chapter 4) and ii) a complete LiDAR coverage is not available and wall to wall estimation is carried out combining LiDAR, Landsat and ancillary data (chapter 5). In chapter 4, a general aboveground biomass plot-level LiDAR model for tropical forest (Asner & Mascaro, 2014) is validated and a specific model for the study area is fitted. Both LiDAR plot-level models are based on the top-of-canopy height (TCH) variable that is derived from the LiDAR digital canopy model. Results show that the pantropical plot-level LiDAR methodology is a reliable alternative to the development of specific models for tropical forests and thus, aboveground biomass in a new study area could be estimated by only measuring basal area (BA). Applying this methodology, the definition of precise BA field measurement procedures (e.g. location, size and shape of the field plots) is decisive to achieve reliable results in future studies. The relation between BA and TCH (Stocking Coefficient) obtained in our study area in Costa Rica varied locally. Therefore, more field work is needed for assessing Stocking Coefficient variations between different life zones and the influence of the stratification of the study areas in tropical forests on the reduction of uncertainty. In chapter 5, the combination of systematic LiDAR information sampling and full coverage Landsat imagery (and ancillary data) prove to be an effective alternative for forest inventories in tropical areas. This methodology allows estimating wall to wall vegetation height, biomass and carbon density in large areas where full LiDAR coverage and traditional field work are technically and/or economically unfeasible. Carbon density prediction using Landsat imaginery shows a slight decrease in the determination coefficient and an increase in RMSE when harshly decreasing LiDAR coverage area. Results indicate that feasible estimates of vegetation height, biomass and carbon density can be accomplished using low LiDAR coverage areas (between 5% and 20% of the total area) in tropical locations.
Resumo:
The structure of complexes made from DNA and suitable lipids (lipoplex, Lx) was examined by cryo-electron microscopy (cryoEM). We observed a distinct concentric ring-like pattern with striated shells when using plasmid DNA. These spherical multilamellar particles have a mean diameter of 254 nm with repetitive spacing of 7.5 nm with striation of 5.3 nm width. Small angle x-ray scattering revealed repetitive ordering of 6.9 nm, suggesting a lamellar structure containing at least 12 layers. This concentric and lamellar structure with different packing regimes also was observed by cryoEM when using linear double-stranded DNA, single-stranded DNA, and oligodeoxynucleotides. DNA chains could be visualized in DNA/lipid complexes. Such specific supramolecular organization is the result of thermodynamic forces, which cause compaction to occur through concentric winding of DNA in a liquid crystalline phase. CryoEM examination of T4 phage DNA packed either in T4 capsides or in lipidic particles showed similar patterns. Small angle x-ray scattering suggested an hexagonal phase in Lx-T4 DNA. Our results indicate that both lamellar and hexagonal phases may coexist in the same Lx preparation or particle and that transition between both phases may depend on equilibrium influenced by type and length of the DNA used.
Resumo:
Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.
Resumo:
This paper focuses on the cave houses of Crevillente (Spain) as a traditional housing experience which takes advantage of local environmental conditions through simple architectural proposals, paying particular attention to the presence of radon gas inside these underground constructions. Our aim is twofold: first, to analyse the architectural conditions of the different excavated typologies found in the municipality and second, to relate them to the existing radon gas levels after checking internal concentration by means of E-PERM® long-term devices placed inside the cave houses in 2011. The measurements corresponding to the main typologies in normal use conditions show that the highest values are 881.9 Bq/m3 in the cave typology, 484.1 Bq/m3 in the cave + attached constructions typology and 373.4 Bq/m3 in the cave + house typology, with geometric mean values of 572.1, 114.0 and 75.5 Bq/m3, respectively. It can be inferred from these results that cave house levels sometimes exceed those included in the 90/143/Euratom European Commission Recommendation on the protection of the public against indoor exposure to radon. The reason why cave houses are more susceptible to radon accumulation in their spaces lies in their direct and permanent contact with the ground where they are located.
Resumo:
This study is aimed at determining the spatial distribution, physical properties, and groundwater conditions of the Vashon advance outwash (Qva) in the Mountlake Terrace, WA area. The Qva is correlative with the Esperance Sand, as defined at its type section; however, local variations in the Qva are not well-characterized (Mullineaux, 1965). While the Qva is a dense glacial unit with low compressibility and high frictional shear strength (Gurtowski and Boirum, 1989), the strength of this unit can be reduced when it becomes saturated (Tubbs, 1974). This can lead to caving or flowing in excavations, and on a larger scale, can lead to slope failures and mass-wasting when intersected by steep slopes. By studying the Qva, we can better predict how it will behave under certain conditions, which will be beneficial to geologists, hydrogeologists, engineers, and environmental scientists during site assessments and early phases of project planning. In this study, I use data from 27 geotechnical borings from previous field investigations and C-Tech Corporation’s EnterVol software to create three-dimensional models of the subsurface geology in the study area. These models made it possible to visualize the spatial distribution of the Qva in relation to other geologic units. I also conducted a comparative study between data from the borings and generalized published data on the spatial distribution, relative density, soil classification, grain-size distribution, moisture content, groundwater conditions, and aquifer properties of the Qva. I found that the elevation of the top of the Qva ranges from 247 to 477 ft. I found that the Qva is thickest where the modern topography is high, and is thinnest where the topography is low. The thickness of the Qva ranges from absent to 242 ft. Along the northern, east-west trending transect, the Qva thins to the east as it rises above a ridge composed of Pre- Vashon glacial deposits. Along the southern, east-west trending transect, the Qva pinches out against a ridge composed of pre-Vashon interglacial deposits. Two plausible explanations for this ridge are paleotopography and active faulting associated with the Southern Whidbey Fault Zone. Further investigations should be done using geophysical methods and the modeling methods described in this study to determine the nature of this ridge. The relative density of the Qva in the study area ranges from loose to very dense, with the loose end of the spectrum probably relating to heave in saturated sands. I found subtle correlations between density and depth. Volumetric analysis of the soil groups listed in the boring logs indicate that the Qva in the study area is composed of approximately 9.5% gravel, 89.3% sand, and 1.2% silt and clay. The natural moisture content ranges from 3.0 to 35.4% in select samples from the Qva. The moisture content appears to increase with depth and fines content. The water table in the study area ranges in elevation from 231.9 to 458 ft, based on observations and measurements recorded in the boring logs. The results from rising-head and falling-head slug tests done at a single well in the study area indicate that the geometric mean of hydraulic conductivity is 15.93 ft/d (5.62 x 10-03 cm/s), the storativity is 3.28x10-03, and the estimated transmissivity is 738.58 ft2/d in the vicinity of this observation well. At this location, there was 1.73 ft of seasonal variation in groundwater elevation between August 2014 and March 2015.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06