410 resultados para galactose


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Krebserkrankungen gehen oft mit der Überexpression von mucinartigen Glycoproteinen auf der Zelloberfläche einher. In vielen Krebserkrankungen wird aufgrund der fehlerhaften Expression verschiedener Glycosyltransferasen das transmembranständige Glycoprotein MUC1, mit verkürzten Glycanstrukturen, überexprimiert. Das Auftreten der verschiedenen tumor-assoziierten Antigene (TACA) korreliert meist mit dem Fortschreiten des Krebs und der Metastasierung. Daher stellen TACAs interessante Zielmoleküle für die Entwicklung einer aktiven Tumorimmuntherapie zur spezifischen Behandlung von Adenokarzinomen dar. In dieser Arbeit galt das Interesse dem epithelialen Mucin MUC1, auf Basis dessen ein synthetischer Zugang zu einheitlichen Antitumorvakzinen, welche aus mucinanalogen Glyco-peptid¬konjugaten des MUC1 und Carrierproteinen bestehen, hergestellt werden sollten.rnUm eine tumorspezifische Immunantwort zu erhalten, müssen die selbst schwach immunogenen MUC1-Antigene über einen nicht-immunogenen Spacer mit einem geeigneten Trägerprotein, wie Tetanus Toxoid oder Rinderserumalbumin (BSA), verbunden werden. rnDa ein Einsatz von Glycokonjugaten in Impfstoffen durch die metabolische Labilität der O-glycosidischen Bindungen eingeschränkt ist, wurden hierzu erstmals fluorierte Vetreter von MUC1-analogen Glycopeptiden verwendet, in denen das Kohlenhydrat-Epitop durch den strategischen Einbau von Fluor¬atomen gegenüber einem raschen Abbau durch Glycosidasen geschützt werden soll. Dazu wurden auf Basis des literaturbekannten Thomsen-Friedenreich-Antigens Synthesestrategien zur Herstellung eines 2’F- und eines 2’,6’-bisfluorierten-Analogons erarbeitet. rnSchlüsselschritte in der Synthese stellten neben der elektrophilen Fluorierung eines Galactalvorläufers auch die -selektive 3-Galactosylierung des TN-Antigen-Bausteins zum 2’F- und 2’,6’-bisfluorierten-Analogons des TF-Disaccharids dar. Durch entsprechende Schutzgruppentransformationen wurden die beiden Derivate in entsprechende Glycosyl¬amino-säure-Bausteine für die Festphasensynthese überführt.rnNeben den beiden Analoga des TF-Antigens wurde auch erstmals ein 2F-Analogon des 2,6-Sialyl-T-Antigens hergestellt. Dazu wurde der entsprechende 2’F-TF-Baustein mit Sialinsäure-xanthogenat nach bereits bekannten Syntheseprotokollen umgesetzt. Aufgrund von Substanzmangel konnte die Verbindung nicht zur Synthese eines MUC1-Glycopeptid-Analogons herangezogen werden.rnDer Einbau der hergestellten Glycosylaminosäure-Bausteine erfolgte in die aus 20 Amino-säuren bestehende vollständige Wiederholungseinheit aus der tandem repeat-Sequenz des MUC1, wobei die entsprechenden Glycanseitenketten stets in Position 6 eingeführt wurden. Um die erhaltenen Glycopeptide für immunologische Studien an Carrier-Proteine anbinden zu können und so ggf. zu funktionsfähigen Impfstoff-Konjugaten zu gelangen, wurden diese stets N-terminal mit einem nicht-immunogenen Triethylenglycol-Spacer verknüpft. Die anschließende Funktionalisierung mit Quadratsäurediethylester erlaubte die spätere chemoselektive Konjugation an Trägerproteine, wie Tetanus Toxoid oder BSA.rnIn ersten immunologischen Bindungsstudien wurden die synthetisierten BSA-Glycopeptid-Konjugate mit Serum-Antikörpern aus Vakzinierungsstudien von MUC1-Tetanus Toxoid-Konjugaten, die (i) eine natürliche TF-Antigenstruktur und (ii) ein entsprechendes TF-Antigenderivat mit Fluorsubstituenten an C-6 des Galactosamin-Bausteins und C-6’ des Galactoserests tragen, untersucht.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zur Synthese hydrolysestabiler MUC1-Antitumorvakzine wurde im Rahmen dieser Arbeit zunächst ein Verfahren zur effizienten N Methylierung von Fmoc-Aminosäuren entwickelt. Die Synthese erfolgte in einer zweistufigen Umsetzung über Oxazolidinone unter Verwendung eines Tube-in-Tube-Durchflussreaktors mit einer semipermeablen Membran aus Teflon® AF 2400. In diesem Tube-in-Tube-Reaktor wurde in der ersten Stufe das Modellsubstrat Fmoc-Alanin bereits nach 2 h annähernd quantitativ in das entsprechende Oxazolidinon umgesetzt. In der zweiten Stufe wurde mit TFA erstmals eine Flüssigkeit durch eine solche Membran des Tube-in-Tube-Reaktors eingeleitet und lieferte innerhalb einer Stunde zahlreiche aliphatische, aromatische und funktionalisierte N-Methylaminosäuren in hohen Ausbeuten.rnDes Weiteren wurden erstmals sensible Glycosylaminosäuren, darunter auch TN Antigen-Strukturen, N-methyliert. Sie dienen als Bausteine für die Synthese von MUC1-Antitumorvakzinen. Neben Fmoc-N-Methyl-TN-Threonin konnten die Fmoc-geschützten N-Methyl-TN-Serin, N-Methyl-Sialyl-TN-Threonin sowie zwei N-Methyl-C Glycosylaminosäuren und in guten Ausbeuten erhalten werden. Anschließend wurde das N methylierte TN-Threonin gezielt in die tandem repeat-Sequenz des MUC1 in einer Festphasenpeptidsynthese eingebaut. Um einen direkten Vergleich bezüglich der N Methylierung im MUC1-Glycopeptide und dem darauf folgenden Einfluss auf die Tumorselektivität der resultierenden Vakzine erhalten zu können, wurde zudem ein Referenzpeptid aufgebaut. Zur Vollendung der Vakzinsynthese erfolgte die Konjugation beider Glycopeptidantigene an die jeweiligen BSA- und TTox-Proteine. rnEin alternativer Zugang zu hydrolysestabilen Glycopeptidbausteinen wurde im letzten Teil der Arbeit über die Synthese von α C Glycosylaminosäuren erarbeitet. Der entwickelte Syntheseweg basiert auf einer Ugi-Vier-Komponenten-Reaktion aus Aldehyd, Amin, Nitril und Carbonsäure. Als benötigte Aldehydkomponenten wurden ein einfaches Galactose- sowie ein Galactosamin-Derivat verwendet. Zum Aufbau des C-glycosidischen Grundgerüsts wurde eine Mikrowellen-unterstützte C-Allylierungsvariante im Durchfluss realisiert. Die Galactose- und Galactosaminaldehyde wurden danach mit chirale Glycosylaminen umgesetzt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During pregnancy, most patients with rheumatoid arthritis (RA) experience spontaneous improvement of their disease activity. Among the soluble candidates that have been investigated in search for the most relevant disease-remitting factor are the galactosylation levels of immunoglobulin G (IgG). In RA, a higher percentage of IgG lacking the terminal galactose residues, thought to play a pro-inflammatory role, is found. During pregnancy, however, IgG galactosylation levels increase and correlate with improved disease activity. The question remains whether the increase in IgG galactosylation during pregnancy is a mere epiphenomenon or a true remission-inducing factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the adhesion of bacteria to the tooth surface is a prerequisite for dental plaque and subsequent caries development, a promising caries preventive strategy could be to block the lectin-glycan-mediated adherence of cariogenic bacteria. The aim of the study was to evaluate potential differences in glycan-binding specificities of two Streptococcus mutans strains (DSM 20523 and DSM 6178) and Streptococcus sobrinus (DSM 20381). A competitive enzyme-linked lectin-binding assay was used to identify the binding specificities of isolated bacterial surface lectins. Blotting of the microbial proteins on neoglycoprotein-coated PVP membranes enabled a qualitative protein analysis of all specific bacterial lectins. Different glycan-binding sites could be identified for the S. mutans strains in comparison to S. sobrinus. An earlier reported glycan-binding specificity for terminal galactose residues could be confirmed for the S. mutans strains. For the S. sobrinus strain, more than one glycan-binding specificity could be found (oligomannose and terminal sialyl residues). Each of the tested strains showed more than one surface lectin responsible for the specific lectin-binding with varying molecular weight (S. mutans, 90/155 kDa and S. sobrinus, 35/45 kDa). The established experimental setup could be used as future standard procedure for the identification of bacterial lectin-derived binding specificities. The findings from this study might serve as basis for the design of an individual 'glycan cocktail' for the competitive inhibition of lectin-mediated adhesion of mutans streptococci to oral surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To allow classification of bacteria previously reported as the SP group and the Stewart-Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial rpoB sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %-100 % similarity between isolates. A blast search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart-Letscher group showed the highest 16S rRNA gene similarity (94.9-95.5 %) to members of the SP group. recN gene sequence analysis of 11 representative strains resulted in similarities of 97-100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart-Letscher group strain. Sequence similarity values based on the recN gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart-Letscher group strain was associated with the SP group. A new genus, Necropsobacter gen. nov., with only one species, Necropsobacter rosorum sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family Pasteurellaceae by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)-L-arabinose, (+)-D-xylose, dulcitol, (+)-D-galactose, (+)-D-mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76(T), and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76(T) are C(14 : 0), C(16 : 0), C(16:1)omega7c and summed feature C(14 : 0) 3-OH/iso-C(16 : 1) I. This fatty acid profile is typical for members of the family Pasteurellaceae. The G+C content of DNA of strain Michel A/76(T) was estimated to be 52.5 mol% in a previous investigation. The type strain is P709(T) ( = Michel A/76(T) = CCUG 28028(T) = CIP 110147(T) = CCM 7802(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Glycopeptide dendrimers are being developed for inhibition of pathogen adhesion to host cells, a process mediated by carbohydrate-lectins interactions. Such compounds could be used in the treatment of infections by pathogenic bacteria such as Pseudomonas aeruginosa that can be resistant to known antibiotics. Pseudomonas aeruginosa produces two lectins, the fucose binding LecB and the galactose binding LecA. Both lectins have been shown to be virulence factors, involved in cell adhesion and biofilms formation. Screening combinatorial libraries of fucosylated peptide dendrimers led to the glycopeptide dendrimer (C-Fuc-LysProLeu)4(LysPheLysIle)2 LysHisIleNH2. This dendrimer binds the lectin LecB with submicromolar IC50 and shows potent inhibition of P. aeruginosa biofilms for both the laboratory strain PAO1 and for clinical isolates [1]. Appending the peptide dendrimer portion of FD2 with galactosy endgroups gave galactosylpeptide dendrimers as potent ligands for LecA which also act as biofilm inhibitors. Structure-activity relationship studies demonstrated that multivalency was essential for strong binding and biofilm inhibition. [2]The results open the way to develop therapeutic agents based on glycopeptide dendrimers. Peptide dendrimers with antimicrobial properties and good cell penetration are other applications of dendritic peptides we are now investigating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously identified a gene cluster, epa (for enterocococcal polysaccharide antigen), involved in polysaccharide biosynthesis of Enterococcus faecalis and showed that disruption of epaB and epaE resulted in attenuation in translocation, biofilm formation, resistance to polymorphonuclear leukocyte (PMN) killing, and virulence in a mouse peritonitis model. Using five additional mutant disruptions in the 26-kb region between orfde2 and OG1RF_0163, we defined the epa locus as the area from epaA to epaR. Disruption of epaA, epaM, and epaN, like prior disruption of epaB and epaE, resulted in alteration in Epa polysaccharide content, more round cells versus oval cells with OG1RF, decreased biofilm formation, attenuation in a mouse peritonitis model, and resistance to lysis by the phage NPV-1 (known to lyse OG1RF), while mutants disrupted in orfde2 and OG1RF_163 (the epa locus flanking genes) behaved like OG1RF in those assays. Analysis of the purified Epa polysaccharide from OG1RF revealed the presence of rhamnose, glucose, galactose, GalNAc, and GlcNAc in this polysaccharide, while carbohydrate preparation from the epaB mutant did not contain rhamnose, suggesting that one or more of the glycosyl transferases encoded by the epaBCD operon are necessary to transfer rhamnose to the polysaccharide. In conclusion, the epa genes, uniformly present in E. faecalis strains and involved in biosynthesis of polysaccharide in OG1RF, are also important for OG1RF shape determination, biofilm formation, and NPV-1 replication/lysis, as well as for E. faecalis virulence in a mouse peritonitis model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous investigations have demonstrated qualitative differences in the plasma membrane glycoproteins of normal and malignant rat liver cells. The present investigations were designed to identify and characterize the spectrum of glycoproteins present on the surface of Novikoff and AS-30D hepatocellular carcinoma cells. Three cell-surface radiolabeling techniques were employed to tag specifically the plasma membrane glycoproteins: lactoperoxidase catalyzed iodination, specific for tyrosine residues; galactose oxidase/NaB{('3)H}(,4), specific for galactosyl residues; and NaIO(,4)/NaB{('3)H}(,4), specific for sialic acids. The glycoproteins were resolved by one- and two-dimensional gel electrophoresis and visualized by fluorography or autoradiography. It was found that these glycoproteins are a complex population of molecules. The complexity of this system is reflected not only in the number of individual components that can be detected (> 25), but in the charge heterogeneity of individual glycoproteins due to variable sialic acid content. Certain glycoproteins behaved anamolously on SDS-polyacrylamide gel electrophoresis; the apparent molecular weight decreasing with increasing acrylamide concentrations suggesting a high % carbohydrate. Cell-surface radiolabeling techniques were employed in combination with lectin affinity chromatography, using lectins of different saccharide specificity, to analyze the saccharide determinants present on the spectrum of cell-surface molecules. It was also found that particular glycoproteins differed in their lability to protease or neuraminidase digestion and in their extractability by non-ionic detergents. From these studies, detailed models of the plasma membrane of Novikoff and AS-30D cells were constructed which incorporates information concerning the structure and accessibility of heterosaccharide and peptide moieties, the relationship of the glycolipids, and the interaction of particular glycoproteins with the lipid bilayer. These investigations provide basic information concerning the molecular composition and properties of the plasma membrane of glycoproteins of malignant rat liver cells and lay the groundwork for future comparison to normal hepatocytes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the changes in the metabolome of hepatitis C virus (HCV)-infected persons, we conducted a metabolomic investigation in both plasma and urine of 30 HCV-positive individuals using plasmas from 30 HCV-negative blood donors and urines from 30 healthy volunteers. Samples were analysed by gas chromatography-mass spectrometry and data subjected to multivariate analysis. The plasma metabolomic phenotype of HCV-positive persons was found to have elevated glucose, mannose and oleamide, together with depressed plasma lactate. The urinary metabolomic phenotype of HCV-positive persons comprised reduced excretion of fructose and galactose combined with elevated urinary excretion of 6-deoxygalactose (fucose) and the polyols sorbitol, galactitol and xylitol. HCV-infected persons had elevated galactitol/galactose and sorbitol/glucose urinary ratios, which were highly correlated. These observations pointed to enhanced aldose reductase activity, and this was confirmed by real-time quantitative polymerase chain reaction with AKR1B10 gene expression elevated sixfold in the liver. In contrast, AKR1B1 gene expression was reduced 40% in HCV-positive livers. Interestingly, persons who were formerly HCV infected retained the metabolomic phenotype of HCV infection without reverting to the HCV-negative metabolomic phenotype. This suggests that the effects of HCV on hepatic metabolism may be long lived. Hepatic AKR1B10 has been reported to be elevated in hepatocellular carcinoma and in several premalignant liver diseases. It would appear that HCV infection alone increases AKR1B10 expression, which manifests itself as enhanced urinary excretion of polyols with reduced urinary excretion of their corresponding hexoses. What role the polyols play in hepatic pathophysiology of HCV infection and its sequelae is currently unknown.