850 resultados para fracture zones
Resumo:
Between January 1996 and July 2003, 93 consecutive patients operated on with a diagnosis of olecranon fractures were identified from our trauma unit files. Fourteen transolecranon fracture-dislocations were found after a retrospective X-radiographic evaluation. Eight patients were women and six were men, with a mean age of 54 years. There were 4 noncomminuted olecranon fractures, treated with K-wires and single tension-band wiring. The remaining 10 fractures were complex fractures, treated in 3 cases with multiple K-wires and single tension-band wiring, in 2 by use of one-third tubular plates, in 1 with a 3.5-mm dynamic compression plate, and in the remaining 4 with 3.5-mm reconstruction plates. Ligament repair was not performed in any case. Three patients needed reoperation because of early failure of primary fixation. Patients were reviewed at a mean follow-up of 3.6 years. Two reported difficulties in daily activities, none with any symptoms of elbow instability. According to the Broberg and Morrey score, 4 patients had excellent results, 6 had good results, 2 had fair results, and 2 had poor results. Four patients showed signs of degenerative arthritis on the radiographs obtained at follow-up. We conclude that transolecranon fracture-dislocation is an underreported and misdiagnosed injury. Various fixation techniques can restore the anatomic relationships and contour of the trochlear notch; the imperative goal is to obtain a good stable primary fixation and allow early active mobilization.
Resumo:
Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen-Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpentinization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44-2.8 mu g g(-1)) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. These findings along with textural observations and major element composition obtained from microprobe analysis suggest reaction of the peridotites with a mafic silicate melt before serpentinization. Serpentine minerals are enriched in B (most values between 10 and 100 mu g g(-1)), depleted in Li (most values below I mu g g(-1)) compared to the primary phases, with considerable variation within and between samples. Be is at the detection limit. Analysis of whole rock samples by prompt gamma activation shows that serpentinization tends to increase B (10.4-65.0 mu g g(-1)), H2O and Cl contents and to lower Li contents (0.07-3.37 mu g g(-1)) of peridotites, implying that-contrary to alteration of oceanic crust-B is fractionated from Li and that the B and Li inventory should depend essentially on rock-water ratios. Based on our results and on literature data, we calculate the inventory of B and Li contained in the oceanic lithosphere, and its partitioning between crust and mantle as a function of plate characteristics. We model four cases, an ODP Leg 209-type lithosphere with almost no igneous crust, and a Semail-type lithosphere with a thick igneous crust, both at I and 75 Ma, respectively. The results show that the Li contents of the oceanic lithosphere are highly variable (17-307 kg in a column of I m x I m x thickness of the lithosphere (kg/col)). They are controlled by the primary mantle phases and by altered crust, whereas the B contents (25-904 kg/col) depend entirely on serpentinization. In all cases, large quantities of B reside in the uppermost part of the plate and could hence be easily liberated during slab dehydration. The most prominent input of Li into subduction zones is to be expected from Semail-type lithosphere because most of the Li is stored at shallow levels in the plate. Subducting an ODP Leg 209-type lithosphere would mean only very little Li contribution from the slab. Serpentinized mantle thus plays an important role in B recycling in subduction zones, but it is of lesser importance for Li. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
(1) The common shrew Sorex araneus and Millet's shrew S. coronatus are sibling species.They are morphologically and genetically very similar but do not hybridize. Their parapatric distribution throughout south-western Europe, with a few narrow zones of distributional overlap, suggests that they are in competitive parapatry. (2) Two of these contact zones were studied; there was evidence of coexistence over periods of 2 years as well as habitat segregation. In both zones, the species segregated on litter thickness and humidity variables. (3) A simple analysis of spatial distribution showed that habitats visible in the field corresponded to the habitats selected by the species. Habitat selection was found throughout the annual life-cycle of the shrews. (4) In one contact zone, a removal experiment was performed to test whether habitat segregation is induced by interspecific interactions. The experiment showed that the species select habitats differentially when both are present and abandon habitat selection when their competitor is removed. (5) These results confirm the role of resource partitioning in promoting narrow rangesof distributional overlap between such parapatric species and qualitatively support the prediction of habitat selection theory that, in a two-species system, coexistence may be achieved by differential habitat selection to avoid competition. The results also support the view that the common shrew and Millet's shrew are in competitive parapatry.
Resumo:
This case-control study assessed whether the trabecular bone score (TBS), determined from gray-level analysis of DXA images, might be of any diagnostic value, either alone or combined with bone mineral density (BMD), in the assessment of vertebral fracture risk among postmenopausal women with osteopenia. Of 243 postmenopausal Caucasian women, 50-80 years old, with BMD T-scores between -1.0 and -2.5, we identified 81 with osteoporosis-related vertebral fractures and compared them with 162 age-matched controls without fractures. Primary outcomes were BMD and TBS. For BMD, each incremental decrease in BMD was associated with an OR = 1.54 (95% CI = 1.17-2.03), and the AUC was 0.614 (0.550-0.676). For TBS, corresponding values were 2.53 (1.82-3.53) and 0.721 (0.660-0.777). The difference in the AUC for TBS vs. BMD was statistically significant (p = 0.020). The OR for (TBS + BMD) was 2.54 (1.86-3.47) and the AUC 0.732 (0.672-0.787). In conclusion, the TBS warrants a closer look to see whether it may be of clinical usefulness in the determination of fracture risk in postmenopausal osteopenic women.
Resumo:
La présence de fluide météorique synchrone à l'activité du détachement (Farmin, 2003 ; Mulch et al., 2007 ; Gébelin et al., 2011), implique que les zones de cisaillement sont des systèmes ouverts avec des cellules de convections à l'échelle crustale et un intense gradient géothermique au sein du détachement (Morrison et Anderson, 1998, Gottardi et al., 2011). De plus, les réactions métamorphiques liées à des infiltrations fluides dans les zones de cisaillement extensionnel peuvent influencer les paramètres rhéologiques du système (White and Knipe, 1978), et impliquer la localisation de la déformation dans la croûte. Dans ce manuscrit, deux zones de cisaillement infiltrées par des fluides météoriques sont étudiées, l'une étant largement quartzitique, et l'autre de nature granitique ; les relations entre déformation, fluides, et roches s'appuient sur des approches structurales, microstructurales, chimiques et isotopiques. L'étude du détachement du Columbia river (WA, USA) met en évidence que la déformation mylonitique se développe en un million d'années. La phase de cisaillement principal s'effectue à 365± 30°C d'après les compositions isotopiques en oxygène du quartz et de la muscovite. Ces minéraux atteignent l'équilibre isotopique lors de leur recristallisation dynamique contemporaine à la déformation. La zone de cisaillement enregistre une baisse de température, remplaçant le mécanisme de glissement par dislocation par celui de dissolution- précipitation dans les derniers stades de l'activité du détachement. La dynamique de circulation fluide bascule d'une circulation pervasive à chenalisée, ce qui engendre localement la rupture des équilibres d'échange isotopiques. La zone de cisaillement de Bitterroot (MT, USA) présente une zone mylonitique de 600m d'épaisseur, progressant des protomylonites aux ultramylonites. L'intensité de la localisation de la déformation se reflète directement sur l'hydratation des feldspaths, réaction métamorphique majeure dite de « rock softening ». Une étude sur roche totale indique des transferts de masse latéraux au sein des mylonites, et d'importantes pertes de volume dans les ultramylonites. La composition isotopique en hydrogène des phyllosilicates met en évidence la présence (1) d'une source magmatique/métamorphique originelle, caractérisée par les granodiorites ayant conservé leur foliation magmatique, jusqu'aux protomylonites, et (2) une source météorique qui tamponne les valeurs des phyllosilicates des fabriques mylonitiques jusqu'aux veines de quartz non-déformées. Les compositions isotopiques en oxygène des minéraux illustrent le tamponnement de la composition du fluide météorique par l'encaissant. Ce phénomène cesse lors du processus de chloritisation de la biotite, puisque les valeurs des chlorites sont extrêmement négatives (-10 per mil). La thermométrie isotopique indique une température d'équilibre isotopique de la granodiorite entre 600-500°C, entre 500-300°C dans les mylonites, et entre 300 et 200°C dans les fabriques cassantes (cataclasites et veines de quartz). Basé sur les résultats issus de ce travail, nous proposons un modèle général d'interactions fluide-roches-déformation dans les zones de détachements infiltrées par des fluides météoriques. Les zones de détachements évoluent rapidement (en quelques millions d'années) au travers de la transition fragile-ductile ; celle-ci étant partiellement contrôlée par l'effet thermique des circulations de fluide météoriques. Les systèmes de détachements sont des lieux où la déformation et les circulations fluides sont couplées ; évoluant rapidement vers une localisation de la déformation, et de ce fait, une exhumation efficace. - The presence of meteoric fluids synchronous with the activity of extensional detachment zones (Famin, 2004; Mulch et al., 2007; Gébelin et al., 2011) implies that extensional systems involve fluid convection at a crustal scale, which results in high geothermal gradients within active detachment zones (Morrison and Anderson, 1998, Gottardi et al., 2011). In addition, the metamorphic reactions related to fluid infiltration in extensional shear zones can influence the rheology of the system (White and Knipe, 1978) and ultimately how strain localizes in the crust. In this thesis, two shear zones that were permeated by meteoric fluids are studied, one quartzite-dominated, and the other of granitic composition; the relations between strain, fluid, and evolving rock composition are addressed using structural, microstructural, and chemical/isotopic measurements. The study of the Columbia River detachment that bounds the Kettle core complex (Washington, USA) demonstrates that the mylonitic fabrics in the 100 m thick quartzite- dominated detachment footwall developed within one million years. The main shearing stage occurred at 365 ± 30°C when oxygen isotopes of quartz and muscovite equilibrated owing to coeval deformation and dynamic recrystallization of these minerals. The detachment shear zone records a decrease in temperature, and dislocation creep during detachment shearing gave way to dissolution-precipitation and fracturing in the later stages of detachment activity. Fluid flow switched from pervasive to channelized, leading to isotopic disequilibrium between different minerals. The Bitterroot shear zone detachment (Montana, USA) developed a 600 m thick mylonite zone, with well-developed transitions from protomylonite to ultramylonite. The localization of deformation relates directly to the intensity of feldspar hydration, a major rock- softening metamorphic reaction. Bulk-rock analyses of the mylonitic series indicate lateral mass transfer in the mylonite (no volume change), and significant volume loss in ultramylonite. The hydrogen isotope composition of phyllosilicates shows (1) the presence of an initial magmatic/metamorphic source characterized by the granodiorite in which a magmatic, and gneissic (protomylonite) foliation developed, and (2) a meteoric source that buffers the values of phyllosilicates in mylonite, ultramylonite, cataclasite, and deformed and undeformed quartz veins. The mineral oxygen isotope compositions were buffered by the host-rock compositions until chloritization of biotite started; the chlorite oxygen isotope values are negative (-10 per mil). Isotope thermometry indicates a temperature of isotopic equilibrium of the granodiorite between 600-500°C, between 500-300°C in the mylonite, and between 300 and 200°C for brittle fabrics (cataclasite and quartz veins). Results from this work suggest a general model for fluid-rock-strain feedbacks in detachment systems that are permeated by meteoric fluids. Phyllosilicates have preserved in their hydrogen isotope values evidence for the interaction between rock and meteoric fluids during mylonite development. Fluid flow generates mass transfer along the tectonic anisotropy, and mylonites do not undergo significant volume change, except locally in ultramylonite zones. Hydration of detachment shear zones attends mechanical grain size reduction and enhances strain softening and localization. Self-exhuming detachment shear zones evolve rapidly (a few million years) through the transition from ductile to brittle, which is partly controlled by the thermal effect of circulating surface fluids. Detachment systems are zones in the crust where strain and fluid flow are coupled; these systems. evolve rapidly toward strain localization and therefore efficient exhumation.
Resumo:
The purpose of this review and analysis is to provide a basic understanding of the issues related to worldwide hypoxic zones and the range of economic questions sorely in need of answers. We begin by describing the causes and extent of hypoxic zones worldwide, followed by a review of the evidence concerning ecological effects of the condition and impacts on ecosystem services. We describe what is known about abatement options and cost effective policy design before turning to an analysis of the large, seasonally recurring hypoxic zone in the Gulf of Mexico. We advance the understanding of this major ecological issue by estimating the relationship between pollutants (nutrients) and the areal extent of the hypoxic zone. This “production function” relationship suggests that both instantaneous and legacy contributions of nutrients contribute to annual predictions of the size of the zone, highlighting concerns that ecologists have raised about lags in the recovery of the system and affirms the importance of multiple nutrients as target pollutants. We conclude with a discussion of critical research needs to provide input to policy formation.
Resumo:
PURPOSE: To derive a prediction rule by using prospectively obtained clinical and bone ultrasonographic (US) data to identify elderly women at risk for osteoporotic fractures. MATERIALS AND METHODS: The study was approved by the Swiss Ethics Committee. A prediction rule was computed by using data from a 3-year prospective multicenter study to assess the predictive value of heel-bone quantitative US in 6174 Swiss women aged 70-85 years. A quantitative US device to calculate the stiffness index at the heel was used. Baseline characteristics, known risk factors for osteoporosis and fall, and the quantitative US stiffness index were used to elaborate a predictive rule for osteoporotic fracture. Predictive values were determined by using a univariate Cox model and were adjusted with multivariate analysis. RESULTS: There were five risk factors for the incidence of osteoporotic fracture: older age (>75 years) (P < .001), low heel quantitative US stiffness index (<78%) (P < .001), history of fracture (P = .001), recent fall (P = .001), and a failed chair test (P = .029). The score points assigned to these risk factors were as follows: age, 2 (3 if age > 80 years); low quantitative US stiffness index, 5 (7.5 if stiffness index < 60%); history of fracture, 1; recent fall, 1.5; and failed chair test, 1. The cutoff value to obtain a high sensitivity (90%) was 4.5. With this cutoff, 1464 women were at lower risk (score, <4.5) and 4710 were at higher risk (score, >or=4.5) for fracture. Among the higher-risk women, 6.1% had an osteoporotic fracture, versus 1.8% of women at lower risk. Among the women who had a hip fracture, 90% were in the higher-risk group. CONCLUSION: A prediction rule obtained by using quantitative US stiffness index and four clinical risk factors helped discriminate, with high sensitivity, women at higher versus those at lower risk for osteoporotic fracture.
Resumo:
BACKGROUND: Mortality is increased after a hip fracture, and strategies that improve outcomes are needed. METHODS: In this randomized, double-blind, placebo-controlled trial, 1065 patients were assigned to receive yearly intravenous zoledronic acid (at a dose of 5 mg), and 1062 patients were assigned to receive placebo. The infusions were first administered within 90 days after surgical repair of a hip fracture. All patients received supplemental vitamin D and calcium. The median follow-up was 1.9 years. The primary end point was a new clinical fracture. RESULTS: The rates of any new clinical fracture were 8.6% in the zoledronic acid group and 13.9% in the placebo group, a 35% risk reduction (P = 0.001); the respective rates of a new clinical vertebral fracture were 1.7% and 3.8% (P = 0.02), and the respective rates of new nonvertebral fractures were 7.6% and 10.7% (P = 0.03). In the safety analysis, 101 of 1054 patients in the zoledronic acid group (9.6%) and 141 of 1057 patients in the placebo group (13.3%) died, a reduction of 28% in deaths from any cause in the zoledronic-acid group (P = 0.01). The most frequent adverse events in patients receiving zoledronic acid were pyrexia, myalgia, and bone and musculoskeletal pain. No cases of osteonecrosis of the jaw were reported, and no adverse effects on the healing of fractures were noted. The rates of renal and cardiovascular adverse events, including atrial fibrillation and stroke, were similar in the two groups. CONCLUSIONS: An annual infusion of zoledronic acid within 90 days after repair of a low-trauma hip fracture was associated with a reduction in the rate of new clinical fractures and improved survival. (ClinicalTrials.gov number, NCT00046254.).
Resumo:
Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp metering for work zones. This report documents the results from the first deployment of temporary ramp meters in work zones in the United States. Temporary ramp meters were deployed at seven urban short-term work zones in Missouri. Safety measures such as driver compliance, merging behavior, and speed differentials were extracted from video-based field data. Mobility analysis was conducted using a calibrated simulation model and the total delays were obtained for under capacity, at capacity, and over capacity conditions. This evaluation suggests that temporary ramp meters should only be deployed at work zone locations where there is potential for congestion and turned on only during above-capacity conditions. The compliance analysis showed that non-compliance could be a major safety issue in the deployment of temporary ramp meters for under-capacity conditions. The use of a three-section instead of a traditional two-section signal head used for permanent ramp metering produced significantly higher compliance rates. Ramp metering decreased ramp platoons by increasing the percentage of single-vehicle merges to over 70% from under 50%. The accepted-merge-headway results were not statistically significant even though a slight shift towards longer headways was found with the use of ramp meters. Mobility analysis revealed that ramp metering produced delay savings for both mainline and ramp vehicles for work zones operating above capacity. On average a 24% decrease in total delay (mainline plus ramp) at low truck percentage and a 19% decrease in delay at high truck percentage conditions resulted from ramp metering.
Resumo:
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.
Resumo:
BACKGROUND AND AIMS: In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). METHODS: An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. KEY RESULTS: Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. CONCLUSIONS: The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.
Resumo:
Purpose: The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. Materials and Methods: The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Results: Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5 +/- 1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6 +/- 0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Conclusion: Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions. Int J Prosthodont 2010;23:129-133.