959 resultados para focal and segmental glomerulosclerosis
Resumo:
Slow potential recording was used for long-term monitoring of the penumbra zone surrounding an ischemic region produced by middle cerebral artery (MCA) occlusion in adult hooded rats (n = 32). Four capillary electrodes (El-E4) were chronically implanted at 2-mm intervals from AP -3, L 2 (El) to AP 0, L 5 (E4). Spontaneous or evoked slow potential waves of spreading depression (SD) were recorded during and 4 h after a 1-h MCA occlusion and at 2- to 3-day intervals afterward for 3 weeks. Duration of the initial focal ischemic depolarization was maximal at E4 and decreased with distance from the focus. SD waves in the penumbra zone were high at El and E2, low and prolonged at E3, and almost absent at E4. Amplitude of elicited SD waves was further reduced 3 days later and slowly increased in the following week. Cortical areas displaying marked reduction of SD waves in the first days after MCA occlusion either remained low or showed substantial (60%) recovery, the probability of which decreased with the duration of the initial focal ischemic depolarization and increased with the distance from the focus. It is concluded that the outcome of ischemia monitored by long-term SD recovery in the perifocal region can be partly predicted from the acute signs of MCA occlusion.
Resumo:
Recent developments in multidimensional heteronuclear NMR spectroscopy and large-scale synthesis of uniformly 13C- and 15N-labeled oligonucleotides have greatly improved the prospects for determination of the solution structure of RNA. However, there are circumstances in which it may be advantageous to label only a segment of the entire RNA chain. For example, in a larger RNA molecule the structural question of interest may reside in a localized domain. Labeling only the corresponding nucleotides simplifies the spectrum and resonance assignments because one can filter proton spectra for coupling to 13C and 15N. Another example is in resolving alternative secondary structure models that are indistinguishable in imino proton connectivities. Here we report a general method for enzymatic synthesis of quantities of segmentally labeled RNA molecules required for NMR spectroscopy. We use the method to distinguish definitively two competing secondary structure models for the 5' half of Caenorhabditis elegans spliced leader RNA by comparison of the two-dimensional [15N] 1H heteronuclear multiple quantum correlation spectrum of the uniformly labeled sample with that of a segmentally labeled sample. The method requires relatively small samples; solutions in the 200-300 microM concentration range, with a total of 30 nmol or approximately 40 micrograms of RNA in approximately 150 microliters, give strong NMR signals in a short accumulation time. The method can be adapted to label an internal segment of a larger RNA chain for study of localized structural problems. This definitive approach provides an alternative to the more common enzymatic and chemical footprinting methods for determination of RNA secondary structure.
Resumo:
Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a member of the calcitonin gene-related peptide (CGRP) family. Using the rat focal stroke model of middle cerebral artery occlusion (MCAO), we determined that AM mRNA expression was significantly increased in the ischemic cortex up to 17.4-fold at 3 h post-MCAO (P < 0.05) and 21.7-fold at 6 h post-MCAO (P < 0.05) and remained elevated for up to 15 days (9.6-fold increase; P < 0.05). Immunohistochemical studies localized AM to ischemic neuronal processes, and radioligand (125I-labeled CGRP) displacement revealed high-affinity (IC50 = 80.3 nmol) binding of AM to CGRP receptors in brain cortex. The cerebrovascular function of AM was studied using synthetic AM microinjected onto rat pial vessels using a cranial window or applied to canine basilar arteries in vitro. AM, applied abluminally, produced dose-dependent relaxation of preconstricted pial vessels (P < 0.05). Intracerebroventricular (but not systemic) AM administration at a high dose (8 nmol), prior to and after MCAO, increased the degree of focal ischemic injury (P < 0.05). The ischemia-induced expression of both AM mRNA and peptide in ischemic cortical neurons, the demonstration of the direct vasodilating effects of the peptide on cerebral vessels, and the ability of AM to exacerbate ischemic brain damage suggests that AM plays a significant role in focal ischemic brain injury.
Resumo:
The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.
Resumo:
VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.
Resumo:
Macrophage colony-stimulating factor (M-CSF) is required for the growth and differentiation of mononuclear phagocytes. In the present studies using human monocytes, we show that M-CSF induces interaction of the Grb2 adaptor protein with the focal adhesion kinase pp125FAK. The results demonstrate that tyrosine-phosphorylated pp125FAK directly interacts with the SH2 domain of Grb2. The findings indicate that a pYENV site at Tyr-925 in pp125FAK is responsible for this interaction. We also demonstrate that the Grb2-FAK complex associates with the GTPase dynamin. Dynamin interacts with the SH3 domains of Grb2 and exhibits M-CSF-dependent tyrosine phosphorylation in association with pp125FAK. These findings suggest that M-CSF-induced signaling involves independent Grb2-mediated pathways, one leading to Ras activation and another involving pp125FAK and a GTPase implicated in receptor internalization.
Resumo:
Cerebral infarction (stroke) is a potentially disastrous complication of diabetes mellitus, principally because the extent of cortical loss is greater in diabetic patients than in nondiabetic patients. The etiology of this enhanced neurotoxicity is poorly understood. We hypothesized that advanced glycation endproducts (AGEs), which have previously been implicated in the development of other diabetic complications, might contribute to neurotoxicity and brain damage during ischemic stroke. Using a rat model of focal cerebral ischemia, we show that systemically administered AGE-modified bovine serum albumin (AGE-BSA) significantly increased cerebral infarct size. The neurotoxic effects of AGE-BSA administration were dose- and time-related and associated with a paradoxical increase in cerebral blood flow. Aminoguanidine, an inhibitor of AGE cross-linking, attenuated infarct volume in AGE-treated animals. We conclude that AGEs may contribute to the increased severity of stroke associated with diabetes and other conditions characterized by AGE accumulation.
Resumo:
The optical power of a thick spherical lens and its Coddington shape factor are essential magnitudes that characterize its image quality. Here, we propose an experimental procedure and apparatus that allow accurate determination of those magnitudes for any spherical lens from geometrical measurements. The performance of the technique and the used instruments are simple since it only requires a microscope and an optical mouse. The propose overcomes the drawbacks of other devices that need of the refractive index or may damage the lens surfaces, like spherometers, and provides similar results to those from commercial lensmeters.
Resumo:
Many studies suggest that balanced budget rules can restrain sovereign debt and lower sovereign borrowing costs, even if those rules are never enforced in court. Typically, this is explained as a result of a legal deterrence logic, in which the threat of judicial enforcement deters sovereigns from violating the rules. By contrast, we argue that balanced budget rules work by coordinating decentralized punishment of sovereigns by bond markets, rather than by posing a credible threat of judicial enforcement. Therefore, the clarity of the focal point provided by the rule, rather than the strength of its judicial enforcement mechanisms, determines its effectiveness. We develop a formal model that captures the logic of our argument, and we assess this model using data on US states. We then consider implications of our argument for the impact of the balanced budget rules recently imposed on eurozone states in the Fiscal Compact Treaty.
Resumo:
Parliamentary debates about the resolution of the EU debt crisis seem to provide a good example for the frequently assumed “politicizationˮ of European governance. Against this background, the paper argues that in order to make sense of this assumption, a clearer differentiation of three thematic focal points of controversies – with regard to the assessment of government leadership, concerning the debate between competing party ideologies within the left/right dimension, and with regard to the assessment of supranational integration – is needed. Applying this threefold distinction, the paper uses a theory of differential Europeanization to explain differences in the thematic structure of debates in the Austrian Nationalrat, the British House of Commons, and the German Bundestag. Empirically, the paper is based on data gained from the computer-based coding of plenary debates about the resolution of the European debt crisis between 2010 and 2011.
Resumo:
"Scale factor system, oblique photo, developmental. Contract NOas 59-6067-c, Aeronautics specification XPH 118 (modified)."
Resumo:
"Prepared by Cornell University for the U. S. Navy Bureau of Aeronautics under contract NOas 57-585-c."
Resumo:
"Prepared ... for the U.S. Navy Bureau of Aeronautics, under contract NOas 57-585-c."
Resumo:
Study Design. Biomechanical study of unembalmed human lumbar segments. Objective. To investigate the effects of tensioning the lumbar fasciae ( transversus abdominis [TrA]) aponeurosis) on segment stiffness during flexion and extension. Summary of Background Data. Animal and human studies suggest that TrA may influence intersegmental movement via tension in the middle and posterior layers of lumbar fasciae ( MLF, PLF). Methods. Compressive flexion and extension moments were applied to 17 lumbar segments from 9 unembalmed cadavers with 20 N lateral tension of the TrA aponeurosis during: 1) static tests: load was compared when fascial tension was applied during static compressive loads into flexion-extension; 2) cyclic loading tests: load, axial displacement, and stiffness were compared during repeated compressive loading cycles into flexion-extension. After testing, the PLF was incised to determine the tension transmitted by each layer. Results. At all segments and loads (< 200 N), fascial tension increased resistance to flexion loads by similar to 9.5 N. In 15 of 17, fascial tension decreased resistance to extension by similar to 6.6 N. Fascial tension during cyclic flexion loading decreased axial displacement by 26% at the onset of loading (0 - 2 N) and 2% at 450 N ( 13 of 17). During extension loading, fascial tension increased displacement at the onset of loading ( 10 of 17) by similar to 23% and slightly (1%) decreased displacement at 450 N. Segment stiffness was increased by 6 N/mm in flexion (44% at 25 N) and decreased by 2 N/mm (8% at 25 N) in extension. More than 85% of tension was transmitted through the MLF. Conclusions. Tension on the lumbar fasciae simulating moderate contraction of TrA affects segmental stiffness, particularly toward the neutral zone.
Resumo:
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 µm; IIB, K(d) = 8 µm; IIC, K(d) = 1.0 µm). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.